1
|
Yuan SX, Su K, Zhang MR, Feng YX, Li Y, Zhang M, Lu TB. Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409909. [PMID: 39807674 DOI: 10.1002/smll.202409909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Indexed: 01/16/2025]
Abstract
The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide Sb4O5Br2 to generate Cs3Sb2Br9/Sb4O5Br2 heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the Cs3Sb2Br9/Sb4O5Br2 heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers. The cobalt-doped Cs3Sb2Br9/Sb4O5Br2 heterostructure demonstrates a record-high electron consumption rate of 840 µmol g-1 h-1 for photocatalytic CO2 reduction to CO coupled with H2O oxidation to O2, which is over 74- and 16-fold higher than that of individual Sb4O5Br2 and Cs3Sb2Br9, respectively. This work provides an effective strategy for promoting charge separation in photocatalysts to improve the performance of artificial photosynthesis.
Collapse
Affiliation(s)
- Su-Xian Yuan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ke Su
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Meng-Ran Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - You-Xiang Feng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yu Li
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
2
|
Das S, Paul S, Sen B, Rudra P, Mondal S, Ali SI. Development of the Sb 4O 5Cl 2@NbSe 2 Composite: The Impact of 2H-NbSe 2 Nanoparticles on Sb 4O 5Cl 2 and Their Application for the Removal of Cr(VI)/Fe(III) and Methyl Orange from Wastewater. Inorg Chem 2024; 63:2709-2724. [PMID: 38253000 DOI: 10.1021/acs.inorgchem.3c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A potential adsorbent, Sb4O5Cl2@NbSe2 composite, was generated from the Sb4O5Cl2 photocatalyst and 5 wt % layered 2H-NbSe2 nanoparticles for the highly effective removal of Cr(VI) and Fe(III) ions and methyl orange (MO) from aqueous solution, and a comparison was drawn against the precursors. Sb4O5Cl2 crystallites and NbSe2 nanoparticles were synthesized hydrothermally, and the composite was prepared by the incipient wetness impregnation technique. The crystal structure of Sb4O5Cl2 was determined by single-crystal X-ray diffraction (SCXRD) data. Powder X-ray diffraction (PXRD) study revealed the 2H phase of NbSe2 nanoparticles. Field emission scanning electron microscopy (FESEM) analysis confirmed the formation of the spherical-shaped NbSe2 nanoparticles from rod-shaped bulk 2H-NbSe2. Morphological changes from the hexagonal to irregular prismatic shape were found upon the formation of the Sb4O5Cl2@NbSe2 composite compared to pure Sb4O5Cl2. Negative ζ-potential values indicated that electrostatic interactions were the predominant factor for the adsorption process. Sb4O5Cl2@NbSe2 provided removal efficiencies of 99% for MO in 6 h, 96.52% for Cr(VI) within 2.5 h, and 92.43% for Fe(III) within 4 h of 10 mg/L initial concentration. The maximum adsorption capacities of the composite for MO, Fe(III), and Cr(VI) were found to be 66.56, 131.48, and 122.30 mg/g, respectively, as calculated using the Langmuir isotherm equation.
Collapse
Affiliation(s)
- Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| | - Pratyasha Rudra
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, West Bengal, India
| |
Collapse
|
3
|
Shen K, Lu X, Shen S, Xu P, Zeng Y, Li L, Cai Y, Jia W, Wang H. Effect of Cobalt on Lifetime of Sb 4 O 5 Cl 2 -Graphene Anode in Chloride-Ion Batteries. CHEMSUSCHEM 2023:e202301392. [PMID: 38126942 DOI: 10.1002/cssc.202301392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
Anode materials based on metal oxychlorides hold promise in addressing electrode dissolution challenges in aqueous-based chloride ion batteries (CIBs). However, their structural instability following chloride ion deintercalation can lead to rapid degradation and capacity fading. This paper investigates a cobalt-doped Sb4 O5 Cl2 -graphene (Co-Sb4 O5 Cl2 @GO) composite anode for aqueous-based CIBs. It exhibits significantly enhanced discharge capacity of 82.3 mAh g-1 after 200 cycles at 0.3 A g-1 ; while, the undoped comparison is only 23.5 mAh g-1 in the same condition. It also demonstrated with a long-term capacity retention of 72.8 % after 1000 cycles (65.5 mAh g-1 ) and a favorable rate performance of 25 mAh g-1 at a high current density of 2 A g-1 . Undertaken comprehensive studies via in-situ experiments and DFT calculations, the cobalt (Co) dopant is demonstrated as the crucial role to enhance the lifetime of Sb4 O5 Cl2 -based anodes. It is found that, the Co dopant improves electronic conductivity and the diffusion of chloride ions beside increases the structural stability of Sb4 O5 Cl2 crystal. Thus, this element doping strategy holds promise for advancing the field of Sb4 O5 Cl2 -based anodes for aqueous-based CIBs, and insights gain from this study also offer valuable knowledge to develop high-performance electrode materials for electrochemical deionization.
Collapse
Affiliation(s)
- Kefan Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoxiao Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shenghui Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Panpan Xu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunhui Zeng
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Luying Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yurong Cai
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenbo Jia
- Daoming Optics & Chemical Co. LTD, Jinhua, 321300, China
| | - Hong Wang
- Daoming Optics & Chemical Co. LTD, Jinhua, 321300, China
| |
Collapse
|
4
|
Zhang Y, Ni G, Li Y, Xu C, Li D, Liu B, Zhang X, Huo P. Recent advances and promise of MXene-based composites as electrode materials for sodium-ion and potassium-ion batteries. Dalton Trans 2023; 53:15-32. [PMID: 38018446 DOI: 10.1039/d3dt03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
With the increasing demand for sustainable energy and concerns about the scarcity of lithium resources, sodium and potassium ion batteries have emerged as promising alternative energy storage technologies. MXene, as a novel two-dimensional material, possesses exceptional electrical conductivity, high surface area, and tunable structural features that make it an ideal candidate for high-performance electrode materials. However, its limited theoretical capacity hinders its widespread application. To overcome this limitation, MXene has been combined with other materials through synergistic effects between different components to enhance the overall electrochemical performance and expand its application in sodium/potassium ion batteries. Recently, substantial advancements have been realized in the exploration of MXene-based composites as energy storage materials, encompassing their synthesis, design, and the comprehension of charge storage mechanisms. This paper aims to propose a comprehensive summary of the latest developments in MXene-based composites as electrode materials for sodium ion batteries and potassium ion batteries, with a particular emphasis on the enhanced physicochemical properties resulting from composite formation. Moreover, the challenges faced by MXene materials in sodium ion batteries and potassium ion batteries are thoroughly discussed, and future research directions to further advance this field are proposed.
Collapse
Affiliation(s)
- Yingjie Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Guoxu Ni
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Yuzheng Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Chengxiao Xu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Daming Li
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Xuliang Zhang
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo, 255000, PR China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
5
|
Feng X, Shi Y, Hu A, Feng R, Xiao Z. Regulating the PO 4 and TiO 6 Polyhedral Building Blocks in TiP 2O 7 Boosts the Potassium Ion Diffusion Kinetics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54499-54509. [PMID: 37962277 DOI: 10.1021/acsami.3c12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Achieving fast and durable potassiation/depotassiation of anode materials for potassium ion batteries (PIB) still remains an elusive yet fascinating goal. Herein, we challenge the conventional wisdom in synthesizing the TiP2O7 superstructure and report a nanocarbon coating on TiP2O7 (TiP2O7/C) using layered MXene as a Ti source to realize an effective tuning in the TiO6 and PO4 building blocks for boosting the K+ diffusion kinetics in PIB. Experimental investigations coupled with systematic theoretical simulations indicate that the interface interaction between TiP2O7 and coated nanocarbon could induce internal adjustment in individual Ti-O bonding and relieve the local distortions of TiO6 octahedra, which endows the TiP2O7/C with favorable regulation in a K+ hopping manner and significantly reduces the K+ diffusion barrier via the diffusion propagation along PO4 blocks with dominant coordination between O/P and K+. Consequently, the TiP2O7/C anode could retain 230 mA h g-1 even after 2200 long-term cycles with an ultralow degradation rate of 0.005%.
Collapse
Affiliation(s)
- Xinyue Feng
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Yanqin Shi
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Aiguo Hu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Ruiping Feng
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Zhubing Xiao
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Toledo RP, Gonçalves RA, Baldan MR, Berengue OM. Cotton-Like Three-Dimensional Sb 4O 5Cl 2 Structures: Synthesis and Ammonium Hydroxide Sensing. ACS OMEGA 2023; 8:41295-41301. [PMID: 37969988 PMCID: PMC10634201 DOI: 10.1021/acsomega.3c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023]
Abstract
Nanostructured materials have emerged as valuable tools for the advancement of novel electrocatalysts. Among them, three-dimensional metal oxides have gained significant attention due to their excellent conductivity, cost-effectiveness, and unique design. This study focuses on the synthesis of cotton-like three-dimensional antimony oxychloride (Sb4O5Cl2) structures through a straightforward precipitation method. The nanostructures exhibit immense potential for sensing applications. Electrochemical characterization reveals that the Sb4O5Cl2 heterostructure demonstrates a remarkable double-layer capacitance of 662 F/cm2, accompanied by excellent cyclic stability. The sensor's performance was tested for the detection of ammonium hydroxide (HA) in NaCl solution, yielding sensitivities ranging from 0.95 to 0.140 mA mM-1 cm-2 and a detection limit of 4.54 μM within a wide detection range of 0.3-250 mM. The sensor device possesses a distinctive cotton-like structure and is synthesized through a simple and cost-effective route.
Collapse
Affiliation(s)
- Rosimara P. Toledo
- Department
of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá, São
Paulo 12516-410, Brazil
| | - Rosana A. Gonçalves
- Instituto
Federal do Norte de Minas (IFNMG), Campus Januária, Montes Claros, Minas Gerais 39480-000, Brazil
| | - Maurício R. Baldan
- PDM3A
– Department of Space Engineering and Technology, National Institute of Space Research (INPE), São José dos Campos, São Paulo 12227-010, Brazil
| | - Olivia M. Berengue
- Department
of Physics, School of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá, São
Paulo 12516-410, Brazil
| |
Collapse
|
7
|
Tian Z, Tian H, Cao K, Bai S, Peng Q, Wang Y, Zhu Q. Facile preparation of Ti3C2Tx sheets by selectively etching in a H2SO4/H2O2 mixture. Front Chem 2022; 10:962528. [PMID: 36339050 PMCID: PMC9626649 DOI: 10.3389/fchem.2022.962528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
MXenes and MXene-based composite materials have potential applications in a wide range of areas due to their unique physical and chemical characteristics. At present, it is still a major challenge to develop a simple, safe, and efficient route to prepare MXenes without using fluorinated etchants. Herein, we design a facile method to prepare Ti3C2Tx MXene sheets by selectively etching Ti3AlC2 powders in an aqueous diluted H2SO4 solution with H2O2 as an oxidant. In a system of H2SO4 and H2O2, an aqueous H2SO4 solution with a concentration of 6 mol/L is a strongly acidic medium with no volatility, and 30% H2O2 acts as a strong green oxidizer without harmful by-products. The experimental process is safe and convenient to conduct in a beaker under a water bath of 40°C. The etching process can be completed in 1 h under the air atmosphere conditions. The experimental results confirmed that the etched Ti3AlC2 powders can be successfully separated into Ti3C2Tx nanosheets under ultrasound treatment without using any intercalation agent. The relevant etching mechanism is may be attributed to the synergy effect of H2SO4 and H2O2, which triggers sequential selective etching of Al layers from the Ti3AlC2 phase. It may provide a new green way to prepare MXene-based materials without using toxic HF or HF-containing etchants.
Collapse
Affiliation(s)
- Zhengshan Tian
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
- *Correspondence: Zhengshan Tian, ; Suzhen Bai,
| | - Hao Tian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Kesheng Cao
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Suzhen Bai
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
- *Correspondence: Zhengshan Tian, ; Suzhen Bai,
| | - Qinlong Peng
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Yabo Wang
- School of Chemistry and Environmental Engineering, Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Qiuxiang Zhu
- College of Information and Electronic Engineering, Hunan City University, Yiyang, China
| |
Collapse
|