1
|
Zhang Y, Xie Y, Mei H, Yu H, Li M, He Z, Fan W, Zhang P, Ricciardulli AG, Samorì P, Li M, Yang S. Electrochemical Synthesis of 2D Polymeric Fullerene for Broadband Photodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416741. [PMID: 39989161 DOI: 10.1002/adma.202416741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Indexed: 02/25/2025]
Abstract
2D polymeric fullerene scaffolds, composed of covalently bonded superatomic C60 nanoclusters, are emerging semiconductors possessing unique hierarchical electronic structures. Hitherto their synthesis has relied on complex and time-consuming reactions, thereby hindering scalable production and limiting the technological relevance. Here, the study demonstrates a facile electrochemical exfoliation strategy based on the intercalation and expansion of a layered fullerene superlattice, to produce large size (≈52.5 µm2) and monolayer thick 2D polymeric C60 with high exfoliation yield (≈83%). In situ reduction of solvated protons (H+) weakens the interlayer interactions thereby promoting the rapid and uniform intercalation of tetra-n-butylammonium (TBA+), ensuring gram-scale throughput and high structural integrity of exfoliated 2D polymeric C60. As a proof of concept, the solution-processed 2D polymeric C60 nanosheets have been integrated into thin-film photodetectors, exhibiting a broad spectral photoresponse ranging from 405 to 1200 nm, with a peak photocurrent at 850 nm and a stable response time. This efficient and scalable exfoliation method holds great promise for the advancement of multifunctional composites and optoelectronic devices based on 2D polymeric C60.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yifan Xie
- State Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Mei
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Yu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minjuan Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zexiang He
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Mengmeng Li
- State Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Zheng K, Ma T, Jia Y, Wang H, Li H. Colorimetric and fluorescence dual-signal sensing of L-Arginine based on TSPP-TA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125505. [PMID: 39626514 DOI: 10.1016/j.saa.2024.125505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/29/2025]
Abstract
L-Arginine (L-Arg) is an essential basic amino acid for human growth and development. Several health disorders can be caused when the level of L-Arg is too high or weak in the body of a human being. Therefore, the quantification of L-Arg is great importance in the field of life sciences. Based on this, 5,10,15,20-(4-sulphonatophenyl)porphyrin (TSPP) probes with excellent water solubility and high quantum yield were synthesized by one-pot method. It was applied to colorimetric and fluorescence sensing systems. The maximum fluorescence emission wavelength was obtained at 643 nm when the excitation wavelength was set at 515 nm. The fluorescence signal was "ON" state with the purple-red of TSPP solution. The introduction of tannic acid (TA) into the TSPP solution partially converted TSPP to the double protonated form (H2TPPS4-). In the reaction, electron transfer taken place, leading to a decrease in the absorbance and fluorescence emission intensity of TSPP. This resulted in a color shift of the solution from purplish-red to green, effectively turning the fluorescence signal to an "OFF" state. The absorbance and fluorescence emission intensity of the quenched TSPP were significantly recovered due to the acid-base neutralization reaction occurs between alkaline L-Arg and TA when L-Arg was added to the TSPP-TA dual-signal sensing system. The color of the solution transitioned from green to colorless. Concurrently, the fluorescence signal was activated, marking an "ON" state. Therefore, an "ON-OFF-ON" type colorimetric and fluorescence dual-signal sensing system was constructed with TSPP-TA/L-Arg. The results showed that the linear range of L-Arg in the colorimetric sensing was 3.14 μM-145.20 μM with the detection limit (LOD, S/N = 3) of 0.11 μM. In the fluorescent sensing system, the linear range of L-Arg was 1.49 μM-271.74 μM with the detection limit (LOD, S/N = 3) of 0.07 μM. This dual-signal sensing system, which combined colorimetric and fluorescence indicators, has been effectively utilized for the high-precision and sensitive detection of L-Arg in real-world samples.
Collapse
Affiliation(s)
- Kun Zheng
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China
| | - Tianfeng Ma
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China
| | - Yanyan Jia
- QingHai Higher Vocational and Technical Institute, Haidong 810799, China
| | - Huan Wang
- Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; College of Pharmacy, Qinghai Minzu University, China.
| | - Huye Li
- The 4th People's Hospital of Qinghai Province, Xining 810007, China.
| |
Collapse
|
3
|
Wu H, Wu J, Tang F, Peng X. Enhancing D/A Interactions via Porphyrin Isomerization to Improve Photovoltaic Performance. CHEMSUSCHEM 2025; 18:e202401207. [PMID: 39101598 DOI: 10.1002/cssc.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The interactions between the electron donors and electron acceptors (D/A) play important roles for the performance of organic solar cells (OSCs). While the isomerization strategy is known to optimize molecular geometries and properties, the impacts of isomerization on the donors or acceptors in D/A interactions have not been extensively investigated. Here in, we innovatively investigated the impacts of donor isomerism on the D/A interactions by synthesizing two small molecule donors m-ph-ZnP2 and p-ph-ZnP2 by linking two functionalized porphyrins at the meta and para positions of phenyl groups, respectively. Compared with p-ph-ZnP2, m-ph-ZnP2 displays reduced self-aggregation but enhanced interactions with PC61BM. Consequently, a much higher power conversion efficiency (PCE) of 5.43 % is achieved for the m-ph-ZnP2 binary OSCs than the p-ph-ZnP2 devices with a PCE of 2.03 %. The enhanced performance of m-ph-ZnP2-based device can be primarily attributed to the stronger intramolecular charge transfer (ICT), the enhanced D/A interactions, the improved charge transfer, and the suppressed charge recombination. Furthermore, the ternary devices based on m-ph-ZnP2:Y6:PC61BM achieve a PCE of 8.34 %. In short, this work elucidates the relationship among the chemical structure, D/A interactions and device performance, providing valuable guidelines for designing efficient OSCs materials.
Collapse
Affiliation(s)
- Hanping Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Feng Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| |
Collapse
|
4
|
Lin ZT, Wu RQ, Chen X, Chen YW, Zou QW, Zhang C, Wu XZ, Li DJ. A Porphyrin-Based MOF Thin Film with Oriented Nanosheet Arrays for Optimizing a Nonlinear Optical Response. Inorg Chem 2024; 63:22613-22619. [PMID: 39531612 DOI: 10.1021/acs.inorgchem.4c04151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Developing two-dimensional (2D) hybrid nanosheet arrays integrating inorganic and organic components is highly significant for third-order nonlinear optical (NLO) applications. Herein, an oriented 2D porphyrin-based MOF (ZnTPyP(Co)) thin film composed of vertically stacked ultrathin nanosheets was fabricated via the liquid-phase epitaxial (LPE) layer-by-layer (LBL) method. The prepared ZnTPyP(Co) thin film exhibits an outstanding third-order NLO response with a high third-order nonlinear susceptibility of ∼2.63 × 10-7 esu, which is ascribed to the hybrid nanosheet array structure. Additionally, experimental Z-scan measurement and theoretical calculations also demonstrate that the substitution of Co metal ions in the porphyrinic core can increase the level of delocalization of the porphyrinic group and contribute to the material's enhanced NLO properties. These findings not only provide new film candidates for NLO application but also highlight the potential of 2D MOF nanosheets in advanced optical devices.
Collapse
Affiliation(s)
- Zi-Tong Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Rui-Qiu Wu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Xuan Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Yun-Wang Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Qi-Wen Zou
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Chen Zhang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - Xiang-Zong Wu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| | - De-Jing Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, Fujian, P. R. China
| |
Collapse
|
5
|
Yang X, Huang J, Li J, Zhao Y, Li H, Yu Z, Gao S, Cao R. Optically Mediated Nonvolatile Resistive Memory Device Based on Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313608. [PMID: 38970535 DOI: 10.1002/adma.202313608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Metal-organic frameworks (MOFs), characterized by tunable porosity, high surface area, and diverse chemical compositions, offer unique prospects for applications in optoelectronic devices. However, the prevailing research on thin-film devices utilizing MOFs has predominantly focused on aspects such as information storage and photosensitivity, often neglecting the integration of the advantages inherent in both photonics and electronics to enhance optical memory. This work demonstrates a light-mediated resistive memory device based on a highly oriented porphyrin-based MOFs film, in which the resistance state of the memristor is modulated by light, realizing the integration of the perception and storage of optical information. The memristor shows excellent performance with a wide light range of 405-785 nm and a persistent photoconductivity phenomenon up to 8.3 × 103 s. Further mechanistic studies have revealed that the resistive switching effect in the memristor is primarily associated with the reversible formation and annihilation of Ag conductive filaments.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jian Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Yanqi Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Hongfang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Shuiying Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
6
|
Zhang JB, Tian YB, Gu ZG, Zhang J. Metal-Organic Framework-Based Photodetectors. NANO-MICRO LETTERS 2024; 16:253. [PMID: 39048856 PMCID: PMC11269560 DOI: 10.1007/s40820-024-01465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024]
Abstract
The unique and interesting physical and chemical properties of metal-organic framework (MOF) materials have recently attracted extensive attention in a new generation of photoelectric applications. In this review, we summarized and discussed the research progress on MOF-based photodetectors. The methods of preparing MOF-based photodetectors and various types of MOF single crystals and thin film as well as MOF composites are introduced in details. Additionally, the photodetectors applications for X-ray, ultraviolet and infrared light, biological detectors, and circularly polarized light photodetectors are discussed. Furthermore, summaries and challenges are provided for this important research field.
Collapse
Affiliation(s)
- Jin-Biao Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Yi-Bo Tian
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China.
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Structure of Matter, Fujian Institute of Research, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, People's Republic of China
- College of Chemistry and Materials Science, Fujian Nornal University, Fuzhou, 350007, Fujian, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China
| |
Collapse
|
7
|
Yue F, Shi M, Li C, Meng Y, Zhang S, Wang L, Song Y, Li J, Zhang H. S-scheme heterojunction Cu-porphyrin/TiO 2 nanosheets with highly efficient photocatalytic reduction of CO 2 in ambient air. J Colloid Interface Sci 2024; 665:1079-1090. [PMID: 38581719 DOI: 10.1016/j.jcis.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Directly capturing CO2 in ambient air and converting it into value-added fuels using photocatalysis is a potentially valuable technology. In this study, Cu-porphyrin (tetrakis-carboxyphenyl porphyrin copper, CuTCPP) was innovatively anchored on the surface of TiO2 (titanium dioxide) nanosheets to form an S-scheme heterojunction. Based on this, a photocatalytic reaction system for stably converting CO2 in ambient air into value-added fuels at the gas-solid interface was constructed without addition of sacrificial agents and alkaline liquids. Under the illumination of visible light and sunlight, the evolution rate of CO is 56 μmol·g-1·h-1 and 73 μmol·g-1·h-1, respectively, with a potential CO2 conversion rate of 35.8 % and 50.4 %. The enhanced of photocatalytic performance is attributed to the introduction of CuTCPP, which provides additional active sites, significantly improves capture capacity of CO2 and the utilization of electrons. Additionally, the formation of S-scheme heterojunction expands the redox range and improves the separation efficiency of photo-generated charges.
Collapse
Affiliation(s)
- Feng Yue
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Mengke Shi
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Cong Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Department of Chemistry, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Yang Meng
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shuo Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China.
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Wang Y, Xu C, Zhou Y, Lee J, Chen Q, Chen H. Interface-Engineered 2D Heterojunction with Photoelectric Dual Gain: Mxene@MOF-Enhanced SPR Spectroscopy for Direct Sensing of Exosomes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308897. [PMID: 38150665 DOI: 10.1002/smll.202308897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Indexed: 12/29/2023]
Abstract
MXene is widely used in the construction of optoelectronic interfaces due to its excellent properties. However, the hydrophilicity and metastable surface of MXene lead to its oxidation behavior, resulting in the degradation of its various properties, which seriously limits its practical application. In this work, a 2D metal-organic framework (2D MOF) with matching 2D morphology, excellent stability performance, and outstanding optoelectronic performance is grown in situ on the MXene surface through heterojunction engineering to suppress the direct contact between reactive molecules and the inner layer material without affecting the original advantages of MXene. The photoelectric dual gain MXene@MOF heterojunction is confirmed. As a photoelectric material, its properties are highly suitable for the demand of interface sensitization layer materials of surface plasmon resonance (SPR). Therefore, using SPR as a platform for the application of this interface material, the performance of MXene@MOF and its potential mechanism to enhance SPR are analyzed in depth using experiments combined with simulation calculations (FDTD/DFT). Finally, the MXene@MOF/peptides-SPR sensor is constructed for rapid and sensitive detection of the cancer marker exosomes to explore its potential in practical applications. This work offers a forward-looking strategy for the design of interface materials with excellent photoelectric performance.
Collapse
Affiliation(s)
- Yindian Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chengcheng Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jaebeom Lee
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
9
|
Qi SC, Zhao YJ, Lu XJ, Liu YL, Sun Z, Liu XQ, Sun LB. Excitation generated preferential binding sites for ethane on porous carbon-copper porphyrin sorbents: ethane/ethylene adsorptive separation improved by light. Chem Sci 2024; 15:7285-7292. [PMID: 38756801 PMCID: PMC11095506 DOI: 10.1039/d4sc00898g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Energy-efficient separation of C2H6/C2H4 is a great challenge, for which adsorptive separation is very promising. C2H6-selective adsorption has big implications, while the design of C2H6-sorbents with ideal adsorption capability, particularly with the C2H6/C2H4-selectivity exceeded 2.0, is still challenging. Instead of the current strategies such as chemical modification or pore space modulation, we propose a new methodology for the design of C2H6-sorbents. With a Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] framework dispersed onto a microporous carbon and a hierarchical-pore carbon, two composite sorbents are fabricated. The composite sorbents exhibit enhanced C2H6-selective adsorption capabilities with visible light, particularly the composite sorbent based on the hierarchical-pore carbon, whose C2H6 and C2H4 adsorption capacities (0 °C, 1 bar) are targetedly increased by 27% and only 1.8% with visible light, and therefore, an C2H6-selectivity (C2H6/C2H4 = 10/90, v/v) of 4.8 can be realized. With visible light, the adsorption force of the C2H6 molecule can be asymmetrically enhanced by the excitation enriched electron density over the adsorption sites formed via the close interaction between the Cu-TCPP and the carbon layer, whereas that of the C2H4 molecule is symmetrically altered and the forces cancelled each other out. This strategy may open up a new route for energy-efficient adsorptive separation of C2H6/C2H4 with light.
Collapse
Affiliation(s)
- Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Yun-Jie Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Xiao-Jie Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Yong-Lan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Zhen Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University 211816 Nanjing China
| |
Collapse
|
10
|
Yu MY, Yao YF, Fang K, Chen LS, Si LP, Liu HY. 2D Metal Porphyrin-Based MOFs and ZIF-8 Composite-Derived Carbon Materials Containing M-N x Active Sites as Bifunctional Electrocatalysts for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16132-16144. [PMID: 38511296 DOI: 10.1021/acsami.3c18384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The main impediment to the development of zinc-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Transition metal N-doped carbon catalysts offer a promising alternative to noble metal catalysts, with metal-organic framework (MOF)-derived carbon material catalysts being particularly noteworthy. Here, we synthesized MxP-Z-C carbon catalysts by combining two-dimensional (2D) metal porphyrin-based MOFs (MxPMFs, x = Fe, Co, Ni, Mn) and three-dimensional zeolitic imidazole framework-8 (ZIF-8) through electrostatic interaction, followed by carbonization. ZIF-8 was inserted between the layers of MxPMFs to prevent its Π-Π stacking, allowing the active sites to become fully exposed. MxP-Z-C demonstrated an impressive catalytic activity for both the ORR and the OER reactions. Among them, FeP-Z-C showed the best catalytic activity. The half-wave potential for ORR was 0.92 V (vs the reversible hydrogen electrode (RHE)), while the overpotential for the OER was 290 mV. In addition, the zinc-air battery assembled by FeP-Z-C exhibited high power density (133.14 mW cm-2) and significant specific capacity (816 mAh gZn-1), indicating considerable potential as a bifunctional catalyst for electronic devices.
Collapse
Affiliation(s)
- Min-Yi Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Yan-Fang Yao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Kun Fang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Li-Shui Chen
- Guangzhou Double One Latex Products Co., Ltd., Guangzhou 510830, China
| | - Li-Ping Si
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
- School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
11
|
Pu DF, Chen QY, Zheng X, Li DJ. Fabrication of Two-Dimensional Homo-Bimetallic Porphyrin Framework Thin Films for Optimizing Nonlinear Optical Limiting. Inorg Chem 2024; 63:909-914. [PMID: 38123359 DOI: 10.1021/acs.inorgchem.3c04030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Developing efficient metal-organic framework (MOF) optical devices with tunable third-order nonlinear optical (NLO) properties is an important challenge for scientific research and practical application. Herein, 2D monometallic and hetero/homo-bimetallic porphyrin MOF thin films (ZnTCPP(M) M = H2, Fe, Zn) were fabricated using the liquid-phase epitaxial (LPE) layer-by-layer (LBL) method to investigate the metal substitution dependent third-order NLO behavior. The prepared homo-bimetallic ZnTCPP(Zn) thin film exhibited enhanced third-order NLO performance with a higher third-order nonlinear susceptibility of ∼4.21 × 10-7 esu compared to monometallic and hetero-bimetallic counterparts. Additionally, theoretical calculations were performed to complement the experimental findings and revealed that the enhanced NLO effect of the ZnTCPP(Zn) thin film is mainly attributed to the enhanced local excitation. These findings not only provide a comprehensive understanding of the relationship between metal types and the NLO behavior of porphyrin MOF thin films but also offer valuable insights into the design and optimization of NLO devices.
Collapse
Affiliation(s)
- De-Fu Pu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - Qing-Yun Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - Xin Zheng
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - De-Jing Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| |
Collapse
|
12
|
Yang X, Huang J, Gao S, Zhao Y, Huang T, Li H, Liu T, Yu Z, Cao R. Solution-Processed Hydrogen-Bonded Organic Framework Nanofilms for High-Performance Resistive Memory Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305344. [PMID: 37540191 DOI: 10.1002/adma.202305344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The integration of hydrogen-bonded organic frameworks (HOFs) into electronic devices holds great promise due to their high crystallinity, intrinsic porosity, and easy regeneration. However, despite their potential, the utilization of HOFs in electronic devices remains largely unexplored, primarily due to the challenges associated with fabricating high-quality films. Herein, a controlled synthesis of HOF nanofilms with smooth surface, good crystallinity, and high orientation is achieved using a solution-processed approach. The memristors exhibit outstanding bipolar switching performance with a low set voltage of 0.86 V, excellent retention of 1.64 × 104 s, and operational endurance of 60 cycles. Additionally, these robust memristors display remarkable thermal stability, maintaining their performance even at elevated temperatures of up to 200 °C. More strikingly, scratched HOF films can be readily regenerated through a simple solvent rinsing process, enabling their reuse for the fabrication of new memristors, which is difficult to achieve with traditional resistive switching materials. Additionally, a switching mechanism based on the reversible formation and annihilation of conductive filaments is revealed. This work provides novel and invaluable insights that have a significant impact on advancing the widespread adoption of HOFs as active layers in electronic devices.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Jian Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Shuiying Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yanqi Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Tao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Hongfang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Tianfu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| |
Collapse
|