1
|
Tang L, Wang Y, Mao S, Yu Z, Chen Y, Xu X, Cai W, Lai K, Yang G, Huang T. Engineered bone-targeting apoptotic vesicles as a minimally invasive nanotherapy for heterotopic ossification. J Nanobiotechnology 2025; 23:348. [PMID: 40369573 PMCID: PMC12077018 DOI: 10.1186/s12951-025-03431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Heterotopic Ossification (HO), refers to pathological extra skeletal bone formation, and there are currently no reliable methods except surgery to reverse these unexpected calcified tissues. Apoptotic vesicles (ApoEVs) are membrane-bound vesicles released by apoptotic cells, which are involved in metabolism regulation and intercellular communication. Due to its superior trauma-healing ability, the hard palate mucosa is expected to become an essential resource for tissue engineering. This work presents a minimally invasive nanotherapy based on an engineered apoEV. Briefly, apoEVs were extracted from hard palate mucosa and engineered with bone-targeting peptide SDSSD to treat HO. This engineered apoEV not only can achieve directed localization of heterotopic bones but also has the compelling dual function of promoting osteoclastic differentiation while inhibiting osteogenic differentiation. The underlying mechanism involves the activation of Hippo and Notch pathways, as well as the regulation of pyrimidine metabolism. We envision that this engineered apoEV may be a feasible and effective strategy for reversing HO.
Collapse
Affiliation(s)
- Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Shihua Mao
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Xiaoqiao Xu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
2
|
Liu L, Hu X, Su Y, Lin C, Wang Y. Application and Development of Nanotechnology in Traditional Chinese Acupuncture in Recent 20 Years: A Comprehensive Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22161-22183. [PMID: 40197005 DOI: 10.1021/acsami.4c22627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Acupuncture, rooted in Traditional Chinese Medicine (TCM), serves as a complementary and alternative therapeutic modality that involves the insertion of needles into specific body points to stimulate and treat a variety of conditions. Over time, acupuncture has garnered global acceptance, progressively addressing an increasing spectrum of medical disorders. The integration of nanotechnology holds considerable potential to improve drug delivery efficacy and broaden the scope of acupuncture's applications, providing novel opportunities for investigating the underlying principles of meridians and acupoints. A bibliometric analysis of the application of nanotechnology in acupuncture over the past two decades (2004-2024) highlights emerging research trends and focal points in the field. This article provides an overview of the history, biological mechanisms, preparation methods, and clinical research status of nanoacupuncture, with a focus on analyzing the applications of nanoacupuncture technology. Nanotechnology enables the visualization and imaging of meridians and acupoints, facilitating a deeper understanding of the physiological mechanisms behind acupuncture's therapeutic effects. Modified acupuncture needles incorporating nanotechnology can serve dual purposes: functioning as sensors for real-time monitoring of various physiological parameters, thereby supporting disease diagnosis and enhancing therapeutic efficacy through specialized interventions. Furthermore, nanotechnology-enhanced acupuncture needles can act as platforms for targeted drug delivery working in tandem with responsive nanoparticles for disease treatment. Despite its promising potential and clinical applicability, nanoacupuncture faces inherent limitations and challenges that must be addressed.
Collapse
Affiliation(s)
- Lisha Liu
- Institute of Pain, The Affiliated Hospital of Southwest Jiaotong University, The Chengdu Third People's Hospital, Chengdu, 610014, China
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Xinzi Hu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yilin Su
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Chongyang Lin
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yu Wang
- Institute of Pain, The Affiliated Hospital of Southwest Jiaotong University, The Chengdu Third People's Hospital, Chengdu, 610014, China
| |
Collapse
|
3
|
Salatin S, Azarfarin M, Farjami A, Hamidi S. The simultaneous use of nanovesicles and magnetic nanoparticles for cancer targeting and imaging. Ther Deliv 2025; 16:167-181. [PMID: 39564978 PMCID: PMC11849928 DOI: 10.1080/20415990.2024.2426447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Cancer is increasingly being recognized as a global health issue with considerable unmet medical need. Despite the rapid progression of anticancer pharmaceuticals, there are still significant challenges for the effective management of cancer. In many circumstances, cancer cells are difficult to detect and treat. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred as magnetic nanovesicles (MNVs), is now well recognized as a potential theranostic option for improving cancer treatment outcomes and reducing adverse effects. MNVs can be used for monitoring the long-term fate and functional benefits of cancer therapy. Moreover, MNV-mediated hyperthermia mechanism has been explored as a potential technique for triggering cancer cell death, and/or controlled release of laden cargo. In this review, we focus on the unique characteristics of MNVs as a promising avenue for targeted drug delivery, diagnosis, and treatments of cancer or tumor. Moreover, we discuss critical considerations related to the issues raised in this area, which will guide future research toward better anti-cancer therapeutics for clinical applications.
Collapse
Affiliation(s)
- Sara Salatin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azarfarin
- School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Park JH, Yoo YE, Yoon JS, Kang DH, Kim JH, Han HN, Kim K. Electrokinetic Enhancement of Membrane Techniques for Efficient Nanoparticle Separation and Preconcentration. Anal Chem 2025; 97:1151-1159. [PMID: 39746213 DOI: 10.1021/acs.analchem.4c04124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Efficient separation and preconcentration of nanoparticles are crucial in a wide range of biomedical applications, particularly as target substances continue to diminish in size. In this study, we introduce an electric field-assisted membrane system that synergistically combines oversized-pore membranes with an electrokinetic particle retention mechanism. Utilizing Ti/Au-coated poly(tetrafluoroethylene) (PTFE) membranes, our approach generates electrokinetic forces to effectively separate and retain charged nanoparticles even smaller than the pores, achieving a separation efficiency over 99% and a preconcentration factor of 1.76 within 10 min. Additionally, membrane fouling and transmembrane pressure are significantly reduced compared to conventional filtration techniques, offering advantages such as lower driving pressure and improved particle recovery. Rigorous experimental analysis and theoretical modeling reveal that this method establishes a critical balance between drag and electrokinetic forces acting on the nanoparticles, thereby enhancing separation and concentration efficiencies. Our research outcome paves the way for advanced particle manipulation techniques, potentially transforming biomolecule enrichment practices in diverse biomedical fields, including point-of-care diagnostics, highly sensitive biochemical detection, and bioprocessing applications.
Collapse
Affiliation(s)
- Ji Hyo Park
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea
| | - Yeong-Eun Yoo
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea
- Department of Nanomechatronics, University of Science and Technology, Deajeon 34103, South Korea
| | - Jae Sung Yoon
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea
- Department of Nanomechatronics, University of Science and Technology, Deajeon 34103, South Korea
| | - Do Hyun Kang
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea
| | - Jeong Hwan Kim
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, South Korea
| | - Heung Nam Han
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Seoul 08826, South Korea
| | - Kwanoh Kim
- Nano Lithography and Manufacturing Research Center, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Daejeon 34103, South Korea
| |
Collapse
|
5
|
Pei J, Palanisamy CP, Jayaraman S, Natarajan PM, Umapathy VR, Roy JR, Thalamati D, Ahalliya RM, Kanniappan GV, Mironescu M. Proteomics profiling of extracellular vesicle for identification of potential biomarkers in Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102359. [PMID: 38821418 DOI: 10.1016/j.arr.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The intricate origins and diverse symptoms of Alzheimer's disease (AD) pose significant challenges for both diagnosis and treatment. Exosomes and microvesicles, which carry disease-specific cargo from a variety of central nervous system cell types, have emerged as promising reservoirs of biomarkers for AD. Research on the screening of possible biomarkers in Alzheimer's disease using proteomic profiling of EVs is systematically reviewed in this comprehensive review. We highlight key methodologies employed in EV isolation, characterization, and proteomic analysis, elucidating their advantages and limitations. Furthermore, we summarize the evolving landscape of EV-associated biomarkers implicated in AD pathogenesis, including proteins involved in amyloid-beta metabolism, tau phosphorylation, neuroinflammation, synaptic dysfunction, and neuronal injury. The literature review highlights the necessity for robust validation strategies and standardized protocols to effectively transition EV-based biomarkers into clinical use. In the concluding section, this review delves into potential future avenues and technological advancements pivotal in crafting EV-derived biomarkers applicable to AD diagnostics and prognostics. This review contributes to our comprehension of AD pathology and the advancement of precision medicine in neurodegenerative diseases, hinting at a promising era in AD precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Rathi Muthaiyan Ahalliya
- Department of Biochemistry, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Research Center in Biotechnology and Food Engineering, Lucian Blaga University of Sibiu, 7-9 Ioan Ratiu Street, Sibiu 550024, Romania.
| |
Collapse
|
6
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Lin SP, Lee WJ, Sun MC, Yang YH, Vinzons LU, Lin YM, Wei YT. Nano-Brush Structure for Rapid Label-Free Differentiation of Alzheimer's Disease Stages and Direct Capture of Neuron-Derived Exosomes from Human Blood Plasma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56478-56489. [PMID: 37994569 DOI: 10.1021/acsami.3c12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The measurement of the neurofilament light chain (NFL) in human blood plasma/serum is a promising liquid biopsy for Alzheimer's disease (AD) diagnosis, offering advantages over conventional neuroimaging techniques recommended in clinical guidelines. Here, a controllable nano-brush structure comprising upstanding silicon nanowires coated with indium tin oxide was employed as the sensing substrate. This nano-brush structure was modified with an NFL antibody (NFLAb) via silane coupling and then further connected as the extended gate in a field-effect transistor (EGFET). Notable signal differences emerged within a 2 min timeframe, enabling the label-free differentiation in human blood plasmas among four distinct cohorts: healthy controls, subjective cognitive decline, mild cognitive impairment, and dementia due to AD. Our study indicates that achieving a surface roughness exceeding 400 nm on the modified nano-brush structure enables the effective electrical sensing in our EGFETs. These distinct electrical responses measured via the NFLAb-modified nano-brush EGFETs can be attributed to the combined effects of the captured NFLs and NFL-specific neuron-derived exosomes (NDEs) found in dementia patients, as confirmed by electron spectroscopy for chemical analysis, atomic force microscopy, and scanning electron microscopy. Finally, the potential of quantitatively detecting NDEs on the NFLAb-modified nano-brush structure was demonstrated using spiked solutions containing NFL-specific NDEs from IMR-32 neuroblast cells, wherein concentration-dependent changes were observed in the EGFETs output signal. Our findings show that the NFLAb-modified nano-brush EGFET enables rapid, label-free differentiation between healthy individuals and patients at varying stages of AD.
Collapse
Affiliation(s)
- Shu-Ping Lin
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Wei-Ju Lee
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan 40705, Republic of China
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan 40705, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
- Faculty of Medicine and Brain Research Center, National Yang-Ming University Schools of Medicine, Taipei, Taiwan 112304, Republic of China
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan 40705, Republic of China
| | - Man-Cheng Sun
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yu-Hsiu Yang
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan 40705, Republic of China
- Dementia Center, Taichung Veterans General Hospital, Taichung, Taiwan 40705, Republic of China
| | - Lester Uy Vinzons
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Mei Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yu-Ting Wei
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| |
Collapse
|
8
|
Xie ZY, Cao HW, Wang Q, Lu H, Du W. Catalpol inhibits hepatic stellate cell activation by reducing the formation and changing the contents of hepatocyte-derived extracellular vesicles. J Cell Commun Signal 2023; 17:723-736. [PMID: 36508052 PMCID: PMC10409968 DOI: 10.1007/s12079-022-00716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cell (HSC) activation is the central event in hepatic fibrosis. The cross-talk between HSCs and hepatocytes, which is mediated by extracellular vesicles (EVs), affects HSC activation. This study aimed to investigate whether Catalpol (CTP) attenuated hepatic fibrosis via modulating EVs. Mice were injected intraperitoneally with CCl4 for 4 weeks to induce hepatic fibrosis. They were gavaged with CTP daily. Mouse serum EVs were isolated and identified using nanoparticle tracking analysis and transmission electron microscopy. Mouse hepatocytes (AML12) and primary HSCs were used to investigate the cell-to-cell crosstalk. The autophagosome-autolysosome fusion was determined using the autophagic flux assay. Hepatic fibrosis was attenuated by CTP, with a decrease of the myofibroblast marker, alpha-smooth muscle actin. The CTP treatment lowered the serum EVs. The co-culture of HSCs and the EVs derived from the CTP-treated mice or hepatocytes reduced HSC proliferation and the expressions of ACTA2 and Col1a1. After the CCl4 treatment, the autophagosomes in AML12 cells were increased, while the autolysosomes were reduced. The decrease of autophagic cargo receptor SQSTM1 in the CTP group suggested that autophagic degradation was sustained. After inhibiting the endogenous Rac1-GTP of hepatocytes, the co-culture of EVs and HSCs reduced Rac1-GTP. The Rac1-GTP level in serum EVs from the CTP-treated mice was reduced in vivo. CTP inhibited autophagy in hepatocytes by reducing Rac1-GTP and thus affect the amount of Rac1-GTP in hepatocyte-derived EVs and the formation of EVs, which attenuated hepatic fibrosis via inhibiting HSC activation.
Collapse
Affiliation(s)
- Zheng-Yuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No.1 Mingde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| | - Heng-Wei Cao
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Wang
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lu
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Du
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|