1
|
Sun H, Yu S, Gu X, Yu J, Li J, Liang W, Wu Z, Liu T, Du Y. Morphology and composition regulation of Prussian blue analogues to boost electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2025; 691:137356. [PMID: 40132421 DOI: 10.1016/j.jcis.2025.137356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Prussian blue analogues (PBAs) have well-dispersed active sites and porous nanostructure. Reasonable design and construction of the nanostructure of PBAs is a promising option to obtain cost-effective electrocatalysts for high-efficiency oxygen evolution reaction (OER). Nevertheless, current structural engineering is costly and complex due to the inevitable involvement of additional etching agents or procedures. In this paper, a simple temperature-control strategy without additional etchant, is presented for the preparation of hollow CoFe-PBA precursors with porous nanobox structure, and then the hollow CoFe-PBA@NiFeRu-LDH nanoboxes (named as CoFe-PBA@NiFeRu-LDH NBs) heterogeneous catalyst is obtained. The preferable composition and structure provide more accessible active sites and better electronic structure for OER. As a result, the optimized CoFe-PBA@NiFeRu-LDH NBs demonstrates an impressive ability to accelerate OER in alkaline electrolyte with a minimal overpotential (219 mV at 10 mA cm-2) and excellent stability. More importantly, by combining CoFe-PBA@NiFeRu-LDH NBs with Pt/C for overall water electrolysis, an ultra-low voltage (1.52 V at 10 mA cm-2) is required. This study offers a facile and effective idea for chemical and morphological control in the manufacture of efficient electrocatalysts.
Collapse
Affiliation(s)
- Huiyu Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Shudi Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Xinyu Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Jun Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Wanyu Liang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Chemical Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Tianpeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
2
|
Zhu J, Chen W, Poli S, Jiang T, Gerlach D, Junqueira JR, Stuart MCA, Kyriakou V, Costa Figueiredo M, Rudolf P, Miola M, Morales DM, Pescarmona PP. Nanostructured Fe-Doped Ni 3S 2 Electrocatalyst for the Oxygen Evolution Reaction with High Stability at an Industrially-Relevant Current Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58520-58535. [PMID: 39404487 PMCID: PMC11533162 DOI: 10.1021/acsami.4c09821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024]
Abstract
A novel oxygen evolution reaction (OER) electrocatalyst was prepared by a synthesis strategy consisting of the solvothermal growth of Ni3S2 nanostructures on Ni foam, followed by hydrothermal incorporation of Fe species (Fe-Ni3S2/Ni foam). This electrocatalyst displayed a low OER overpotential of 230 mV at 100 mA·cm-2, a low Tafel slope of 43 mV·dec-1, and constant performance at an industrially relevant current density (500 mA·cm-2) over 100 h in a 1.0 M KOH electrolyte, despite a minor loss of Fe in the process. Based on a detailed characterization by (in situ) Raman spectroscopy, (quasi-in situ) XPS, SEM, TEM, XRD, ICP-AES, EIS, and Cdl analysis, the high OER activity and stability of Fe-Ni3S2/Ni foam were attributed to the nanostructuring of the surface in the form of stable nanosheets and to the combination of Ni3S2 granting suitable electrical conductivity with newly formed NiFe-based (oxy)hydroxides at the surface of the material providing the active sites for OER.
Collapse
Affiliation(s)
- Jiahui Zhu
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Wei Chen
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands
| | - Stefano Poli
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Tao Jiang
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Dominic Gerlach
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AGGroningen, The Netherlands
| | - João R.
C. Junqueira
- Analytical
Chemistry - Center for Electrochemical Sciences (CES), Faculty of
Chemistry and Biochemistry, Ruhr University
Bochum, D-44780Bochum Germany
| | - Marc C. A. Stuart
- Electron
Microscopy Group, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen,9747 AG Groningen, The Netherlands
| | - Vasileios Kyriakou
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Marta Costa Figueiredo
- Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5600 MBEindhoven, The Netherlands
| | - Petra Rudolf
- Zernike
Institute for Advanced Materials, University
of Groningen, 9747 AGGroningen, The Netherlands
| | - Matteo Miola
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Dulce M. Morales
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| | - Paolo P. Pescarmona
- Chemical
Engineering Group Engineering and Technology Institute Groningen (ENTEG), University of Groningen, 9747 AGGroningen The Netherlands
| |
Collapse
|
3
|
Liang J, Zhao Z, Su Z, Qu W, Guo R, Li X, Shang Y. Multiphase interface coupling of Ni-based sulfide composites for high-current-density oxygen evolution electrocatalysis in alkaline freshwater/simulated seawater/seawater. Dalton Trans 2024; 53:15040-15047. [PMID: 39196634 DOI: 10.1039/d4dt01673d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Constructing highly efficient electrocatalysts is vital to enhance oxygen evolution reaction (OER) performance at industrially relevant current densities. Herein, three-phase coupled Ni3S2/r-NiS/h-NiS composites are grown in situ on Ni foam (NNSN/NF) via a one-step solvothermal approach. The as-prepared composites need overpotentials of only 377 mV, 451 mV and 476 mV at 1000 mA cm-2 for the OER in alkaline freshwater, simulated seawater and seawater, respectively. In addition, the optimized catalyst exhibited long-term durability at 300 mA cm-2. Our work clarifies designing and preparing cost-effective Ni-based sulfide electrocatalysts for the OER in alkaline freshwater/simulated seawater/seawater under industrially relevant current densities.
Collapse
Affiliation(s)
- Jing Liang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhifeng Zhao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Zhanhua Su
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| | - Weili Qu
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Xiaofeng Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yongchen Shang
- College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
4
|
Shen J, Liu Y, Chen Q, Yu W, Zhong Q. In-situ construction defect-rich CuNiCoS 4 /1T-MoS 2 heterostructures as superior electrocatalysts for water splitting. J Colloid Interface Sci 2024; 658:1009-1015. [PMID: 38176090 DOI: 10.1016/j.jcis.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Rational design and construction of bifunctional heterostructure electrocatalysts with high-conductivity and more active sites is imperative for water splitting. Herein, based on the tunable property of layered double hydroxide laminates cations, topological transformation technology and template confine method, a series of high-performance bifunctional catalysts composed of transition metal doping NiCo2S4 (MNiCoS4, M = Cu, Fe, Zn, Mn) and 1T-MoS2 were in-situ fabricated on nickel foam. In particular, CuNiCoS4/1T-MoS2 exhibits an ultralow overpotential of 163 mV at 50 mA cm-2 for oxygen evolution reaction (OER) and favorable hydrogen evolution reaction activity. The two-electrode system requires only 1.52 V to attain a current density of 10 mA cm-2. To the best of our knowledge, its OER electrocatalytic activity far exceed state-of-art catalysts reported. The outstanding performance of this series of catalysts can be attributed to two aspects. First, the highly conductive 1T-MoS2 can facilitate electron transfer, and second, the defect-rich heterostructure can effectively regulate the electronic structure of the active metal and expose abundant active sites. This work provides a valuable strategy for developing high activity electrocatalysts for efficient water splitting.
Collapse
Affiliation(s)
- Jiaying Shen
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yefan Liu
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Qianqiao Chen
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Wanchin Yu
- Institute of Organic and Polymeric Materials, Department of Molecular Science and Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, ROC
| | - Qin Zhong
- Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
5
|
Gultom NS, Zhou YC, Kuo DH. A facile and efficient method for preparing La-doped Co 3O 4 by electrodeposition as an efficient air cathode in rechargeable zinc-air batteries: Role of oxygen vacancies. J Colloid Interface Sci 2024; 655:394-406. [PMID: 37948813 DOI: 10.1016/j.jcis.2023.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/17/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
A rechargeable zinc-air battery (ZAB) is a promising candidate for simple and low-cost energy storage systems. However, preparing the air cathode material using a binder-free method and a bifunctional catalyst is still the major challenge in the field. Herein, we demonstrate the effect of different La contents doped into the Co3O4 spinel structure in the presence of oxygen vacancies prepared by a facile and efficient electrodeposition technique on the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and ZAB performance. Incorporating the La dopant into the Co3O4 improves the OER and ORR performances and thus enhances the specific capacity and energy density of ZAB. The optimal La-doping amount in the CoLa-1 catalyst demonstrates high feasibility for practical application with a capacity of 780 ± 24 mAh/g and an energy density of 901 ± 39 mW g-1, significantly outperforming the pristine Co3O4. The stability and cycling tests reveal good durability performance after 300 cycles and 100 h of testing without degradation, which is much more stable than the benchmark Pt/C + RuO2 electrode. The performance enhancement is attributed to the synergetic effect of high active surface area, low charge transfer resistance, and optimal oxygen vacancies. A kinetic micromechanism is proposed to illustrate the importance of the oxygen vacancy amount in trapping oxygen gas and maximizing the number of ORR and OER reactions.
Collapse
Affiliation(s)
- Noto Susanto Gultom
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Yi-Cheng Zhou
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan; Graduate Institute of Energy and Sustainability Technology, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan.
| |
Collapse
|
6
|
Wan Z, Zhang Y, Ren Q, Li X, Yu H, Zhou W, Ma X, Xuan C. Interface engineering of NiS/NiCo 2S 4 heterostructure with charge redistribution for boosting overall water splitting. J Colloid Interface Sci 2024; 653:795-806. [PMID: 37751675 DOI: 10.1016/j.jcis.2023.09.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Developing highly efficient bifunctional non-noble metal-based electrocatalysts is pivotal to fulfilling practical water electrolysis. In this work, NiS/NiCo2S4 heterostructured electrocatalysts are prepared through a simply controlling sulfurization process by employing a one-pot solvothermal strategy. The alteration of cobalt addition amount can affect the crystalline phase, morphology, and catalytic activity of the resulting heterostructured materials. The successful integration of NiS with NiCo2S4 is realized by deliberately tuning the cobalt addition amount. The resulting Co-Ni-S5:1 delivers high activity with low overpotentials of 198 and 259 mV to attain 10 mA cm-2 when used as electrocatalysts toward hydrogen evolution reaction and oxygen evolution reaction, respectively. Experimental and theoretical calculations evidence the strong interface coupling between NiS and NiCo2S4 leads to increased electronic conductivity, electron migration near lattice-matched interface and interfacial charge redistribution, thereof enhancing the reaction kinetics rate and activity. Moreover, the potential application is demonstrated by employing Co-Ni-S5:1 in a two-electrode electrolyzer which can efficiently catalyze water electrolysis and work stably for 100 h. This work not only provides highly efficient bifunctional heterostructured electrocatalysts by simply regulating the metal components in sulfides but also further broadens the application of interface engineering.
Collapse
Affiliation(s)
- Zhenwei Wan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yueqi Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Qinglin Ren
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xueru Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haitao Yu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenkai Zhou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xinbin Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Cuijuan Xuan
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
7
|
Zhang J, Zhao S, Chen B, Yin S, Feng Y, Yin Y. Sulfidation of CoCuO x Supported on Nickel Foam to Form a Heterostructure and Oxygen Vacancies for a High-Performance Anion-Exchange Membrane Water Electrolyzer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45756-45763. [PMID: 37738288 DOI: 10.1021/acsami.3c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Anion-exchange membrane water electrolyzer (AEMWE) is attracting attention for hydrogen production owing to its ability to employ nonprecious metal catalysts and high energy conversion efficiency. Spinel-structured transition metal oxides exhibit excellent potential in oxygen evolution reaction (OERs). Nevertheless, the research on highly active and durable spinel-structured electrodes for the anodic OER of AEMWE is deficient. Herein, a self-supported S-CoCu oxide/nickel foam (S-CoCuOx/NF) anode was synthesized through a two-step method (electrodeposition and sulfidation). The formation of abundant oxygen vacancies and heterostructure collaboratively enhances the electron and mass transfer, resulting in an overpotential of 313 mV at 100 mA cm-2 for OER. For the lab-scale AEMWE system with the S-CoCuOx/NF anode, a current density of 1 A cm-2 was obtained at 1.87 V (cell voltage) with high durability for 110 h (1 A cm-2) at 60 °C. The results will provide insights into developing the spinel structure-derived anode for high-performance AEMWE.
Collapse
Affiliation(s)
- Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shuo Zhao
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Bin Chen
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shuoyao Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Wang R, Zhu L, Li X, Sun C, Liu H, Zhu L, Wang K. Carbon Quantum Dots-Doped Ni 3Se 4/Co 9Se 8/Fe 3O 4 Multilayer Nanosheets Prepared Using the One-Step Solvothermal Method to Boost Electrocatalytic Oxygen Evolution. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5115. [PMID: 37512388 PMCID: PMC10383042 DOI: 10.3390/ma16145115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Oxygen evolution reaction is a momentous part of electrochemical energy storage and conversion devices such as rechargeable metal-air batteries. It is particularly urgent to develop low-cost and efficient electrocatalysts for oxygen evolution reactions. As a potential substitute for noble metal electrocatalysts, transition metal selenides still prove challenging in improving the activity of oxygen evolution reaction and research into reaction intermediates. In this study, a simple one-step solvothermal method was used to prepare a polymetallic compound carbon matrix composite (Co9Se8/Ni3Se4/Fe3O4@C) with a multilayered nanosheets structure. It exhibited good OER activity in an alkaline electrolyte solution, with an overpotential of 268 mV at 10 mA/cm2. In addition, this catalyst also showed excellent performance in the 24 h stability test. The composite presents a multi-layer sheet structure, which effectively improves the contact between the active site and the electrolyte. The selenide formed by Ni and Co has a synergistic effect, and Fe3O4 and Co9Se8 form a heterojunction structure which can effectively improve the reaction activity by initiating the electronic coupling effect through the interface modification. In addition, carbon quantum dots have rich heteroatoms and electron transferability, which improves the electrochemical properties of the composites. This work provides a new strategy for the preparation of highly efficient OER electrocatalysts utilizing the multi-metal synergistic effect.
Collapse
Affiliation(s)
- Yao Zhang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of New Metallic Functional Materials and Advanced Surface Engineering in Universities of Shandong, School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Runze Wang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Longqi Zhu
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xu Li
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, China
| | - Caixia Sun
- Key Laboratory of New Metallic Functional Materials and Advanced Surface Engineering in Universities of Shandong, School of Mechanical and Electronic Engineering, Qingdao Binhai University, Qingdao 266555, China
| | - Haizhen Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao 266555, China
| | - Kuikui Wang
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Ni S, Qu H, Xu Z, Zhu X, Chen L, Xing H, Wu X, Liu H, Yang L. Regulating the Spin State of Metal and Metal Carbide Heterojunctions for Efficient Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466139 DOI: 10.1021/acsami.3c07955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Developing high-performance electrocatalysts for oxygen evolution reaction (OER) is of importance for improving the overall efficiency of water splitting. Herein, the CoFe/(CoxFe1-x)3Mo3C heterojunction is purposely designed as an OER catalyst, which displays a low overpotential of 293 mV for affording a current density of 10 mA cm-2 and a small Tafel slope of 48 mV/dec. Various characterization results demonstrate that the significant work-function difference between CoFe and (CoxFe1-x)3Mo3C can induce interfacial charge redistribution, which results in the formation of Co and Fe sites with a high-spin state, thus stimulating the surface phase reconstruction of CoFe/(CoxFe1-x)3Mo3C to corresponding active oxyhydroxide. Meanwhile, the electrochemical leaching of Mo ions from the initial structure can contribute to the formation of defective sites, further benefiting OH- adsorption and surface oxidation. Moreover, the remaining CoFe can accelerate electron migration during the electrocatalytic process. This study presents new insights into constructing efficient OER electrocatalysts with an optimized spin-state configuration via interfacial engineering.
Collapse
Affiliation(s)
- Shan Ni
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongnan Qu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihao Xu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyang Zhu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Chen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Wu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Liangrong Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| |
Collapse
|
10
|
Wang X, Yu X, Wu S, He P, Qin F, Yao Y, Bai J, Yuan G, Ren L. Crystalline-Amorphous Interface Coupling of Ni 3S 2/NiP x/NF with Enhanced Activity and Stability for Electrocatalytic Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15533-15544. [PMID: 36920420 DOI: 10.1021/acsami.3c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design of highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is an urgent need but remains challenging for various sustainable energy systems. How to adjust the atomic structure and electronic structure of the active center is a key bottleneck problem. Accelerating the electron transfer process and the deep self-reconstruction of active sites could be a cost-effective strategy toward electrocatalytic OER catalyst development. Here, a crystalline-amorphous (c-a) coupled Ni3S2/NiPx electrocatalyst self-supported on nickel foam with an intimate interface was developed via a feasible solvothermal-electrochemistry method. The coupling interface of the crystalline structure with high conductivity and amorphous structure with numerous potential active sites could regulate the electronic structure and optimize the adsorption/desorption of O-containing species, ultimately resulting in high OER catalytic performance. The obtained Ni3S2/NiPx/NF presents a low OER overpotential of 265 mV to obtain 10 mA·cm-2 and a small Tafel slope of 51.6 mV·dec-1. Also, the catalyst with the coupled interface exhibited significantly enhanced long-term stability compared to the other two catalysts, with <5% decay in OER activity over 20 h of continuous operation, while that of Ni3S2/NF and NiPx/NF decreased by about 30 and 50%, respectively. This study provides inspiration for other energy conversion reactions in optimizing the performance of catalysts by coupling crystalline-amorphous structures.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xu Yu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shuang Wu
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Pinyi He
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fu Qin
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yongkang Yao
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jianliang Bai
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Guojun Yuan
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei 230011, China
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
11
|
Zhang N, Li Y, Zhang R, Huang S, Wang F, Tang M, Liu J. Tiny Ni3S2 boosting MoS2 hydrogen evolution in alkali by enlarging coupling boundaries and stimulating basal plane. J Colloid Interface Sci 2023; 642:479-487. [PMID: 37023519 DOI: 10.1016/j.jcis.2023.03.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The relatively slow reaction kinetics of the hydrogen evolution reaction (HER) by water electrolysis in alkali hinder its large-scale industrial production. To improve the HER activity in alkaline media, a novel Ni3S2/MoS2/CC catalytic electrode was synthesized by a simple two-step hydrothermal method in this work. The modification of MoS2 by Ni3S2 could facilitate the adsorption and dissociation of water, thus accelerating the alkaline HER kinetics. Moreover, the unique morphology of small Ni3S2 nanoparticles grown on MoS2 nanosheets not only increased the interface coupling boundaries, which acted as the most efficient active sites for the Volmer step in alkaline medium, but also sufficiently activated the MoS2 basal plane, thus providing more active sites. Consequently, Ni3S2/MoS2/CC only needed overpotentials of 189.4 and 240 mV to drive current densities of 100 and 300 mA·cm-2, respectively. More importantly, its catalytic performance of Ni3S2/MoS2/CC even exceeded that of Pt/C at a high current density after 261.7 mA·cm-2 in 1.0 M KOH.
Collapse
|
12
|
Li K, Pan S, Zhang H, Zhang Q, Wan D, Zeng X. Interfacial engineering and chemical reconstruction of Mo/Mo 2C@CoO@NC heterostructure for promoting oxygen evolution reaction. Dalton Trans 2023; 52:2693-2702. [PMID: 36745482 DOI: 10.1039/d2dt03865j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical reorganization and interfacial engineering in hybrid nanomaterials are promising strategies for enhancing electrocatalytic performance. Herein, MoO3@zeolitic imidazolate framework-67 (ZIF-67) heterogeneous nanoribbons are designed through coordination assembly. By following heat treatment, a Mo/Mo2C@CoO@NC heterostructure with nitrogen-doped carbon-encapsulated CoO hexagons (CoO@NC) anchored on the Mo/Mo2C jag matrix was fabricated. Notably, through controllable experimental optimization, the as-prepared Mo/Mo2C@CoO@NC heterostructure exhibits numerous active centers (e.g. Mo, Mo2C, CoO, and NC), fully exposed active sites (numerous pores and jagged structures), and abundant heterointerfaces (Mo/Mo2C, Mo2C/CoO@NC, Mo2C/amorphous, and CoO@NC/amorphous), and exhibits good conductivity (localized single-crystal behavior, graphitized carbon). As a result, the as-developed Mo/Mo2C@CoO@NC heterostructures inherit impressive oxygen evolution reaction (OER) performance with an overpotential of only 215 mV at 10 mA cm-2. Furthermore, Mo/Mo2C@CoO@NC heterostructures exhibit excellent stability with a current density retention of 98.4% after 20 h chronoamperometry. This work provides deep insights into chemical reconstructions and tuning heterointerfaces to efficiently enhance the OER activity of heterostructure-based electrocatalysts.
Collapse
Affiliation(s)
- Kai Li
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Sihui Pan
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Haiqi Zhang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Qingqing Zhang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Detian Wan
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Xiaojun Zeng
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| |
Collapse
|