1
|
Wang K, Lin X, Lv X, Xie M, Wu J, Wu JJ, Luo Y. Nanozyme-based aptasensors for the detection of tumor biomarkers. J Biol Eng 2025; 19:13. [PMID: 39920818 PMCID: PMC11806818 DOI: 10.1186/s13036-025-00485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
A nanozyme-based aptasensor combines the unique properties of nanozymes with the specificity of aptamers for the detection of various biomolecules. Nanozymes are nanomaterials that possess enzyme-like properties, demonstrating substantial potential for enhancing the sensing capabilities of biosensors. In recent years, the incorporation of nanozymes into biosensors has opened new avenues for the detection of tumor biomarkers. The unique attributes of nanozymes and aptamers lead to biosensors characterized by high sensitivity, specificity, reproducibility and accuracy in analytical performance. This article reviews the research progress of nanozyme-based aptasensors in tumor biomarker detection over the past decade. We categorize these sensors based on their sensing modes and target types, and examine the properties and applications of the nanozymes employed in these devices, providing a thorough discussion of the strengths and weaknesses associated with each sensor type. Finally, the review highlights the strengths and challenges associated with nanozyme-based biosensors and envisions future developments and applications in this field. The objective is to provide insights for improving biosensor performance in tumor biomarker detection, thereby contributing to advancements in precision cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Xiaogang Lin
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China.
| | - Xiao Lv
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Mingna Xie
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jinyu Wu
- Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education of China, Chongqing University, Chongqing, 400044, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Yang Luo
- Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
2
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
3
|
Xie Z, Wang Y, Chen T, Fan W, Wei L, Liu B, Situ X, Zhan Q, Fu T, Tian T, Li S, He Q, Zhou J, Wang H, Du J, Tseng HR, Lei Y, Tang KJ, Ke Z. Circulating tumor cells with increasing aneuploidy predict inferior prognosis and therapeutic resistance in small cell lung cancer. Drug Resist Updat 2024; 76:101117. [PMID: 38996549 DOI: 10.1016/j.drup.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
AIMS Treatment resistance commonly emerges in small cell lung cancer (SCLC), necessitating the development of novel and effective biomarkers to dynamically assess therapeutic efficacy. This study aims to evaluate the clinical utility of aneuploid circulating tumor cells (CTCs) for risk stratification and treatment response monitoring. METHODS A total of 126 SCLC patients (two cohorts) from two independent cancer centers were recruited as the study subjects. Blood samples were collected from these patients and aneuploid CTCs were detected. Aneuploid CTC count (ACC) and aneuploid CTC score (ACS), were used to predict progression-free survival (PFS) and overall survival (OS). The performance of the ACC and the ACS was evaluated by calculating the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS Compared to ACC, ACS exhibited superior predictive power for PFS and OS in these 126 patients. Moreover, both univariate and multivariate analyses revealed that ACS was an independent prognostic factor. Dynamic ACS changes reflected treatment response, which is more precise than ACC changes. ACS can be used to assess chemotherapy resistance and is more sensitive than radiological examination (with a median lead time of 2.8 months; P < 0.001). When patients had high ACS levels (> 1.115) at baseline, the combination of immunotherapy and chemotherapy resulted in longer PFS (median PFS, 7.7 months; P = 0.007) and OS (median OS, 16.3 months; P = 0.033) than chemotherapy alone (median PFS, 4.9 months; median OS, 13.6 months). CONCLUSIONS ACS could be used as a biomarker for risk stratification, treatment response monitoring, and individualized therapeutic intervention in SCLC patients.
Collapse
Affiliation(s)
- Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanxia Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tingfei Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Fan
- Cyttel Biomedical Technology Co., Ltd, Taizhou 225300, China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bixia Liu
- Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qinru Zhan
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tian Tian
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuhua Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianwen Zhou
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huipin Wang
- Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Juan Du
- Molecular Diagnostic Center, Zhongshan City People's Hospital, Zhongshan 528403, China
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.
| | - Yiyan Lei
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ke-Jing Tang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Molecular Diagnosis and Gene Test Centre, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Tsai KY, Huang PS, Chu PY, Nguyen TNA, Hung HY, Hsieh CH, Wu MH. Current Applications and Future Directions of Circulating Tumor Cells in Colorectal Cancer Recurrence. Cancers (Basel) 2024; 16:2316. [PMID: 39001379 PMCID: PMC11240518 DOI: 10.3390/cancers16132316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to predict or detect colorectal cancer (CRC) recurrence early after surgery enables physicians to apply appropriate treatment plans and different follow-up strategies to improve patient survival. Overall, 30-50% of CRC patients experience cancer recurrence after radical surgery, but current surveillance tools have limitations in the precise and early detection of cancer recurrence. Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and enter the bloodstream. These can provide real-time information on disease status. CTCs might become novel markers for predicting CRC recurrence and, more importantly, for making decisions about additional adjuvant chemotherapy. In this review, the clinical application of CTCs as a therapeutic marker for stage II CRC is described. It then discusses the utility of CTCs for monitoring cancer recurrence in advanced rectal cancer patients who undergo neoadjuvant chemoradiotherapy. Finally, it discusses the roles of CTC subtypes and CTCs combined with clinicopathological factors in establishing a multimarker model for predicting CRC recurrence.
Collapse
Affiliation(s)
- Kun-Yu Tsai
- Division of Colon and Rectal Surgery, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Thi Ngoc Anh Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hsin-Yuan Hung
- Division of Colon and Rectal Surgery, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chia-Hsun Hsieh
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
5
|
Cortés-Hernández LE, Eslami-S Z, Pantel K, Alix-Panabières C. Circulating Tumor Cells: From Basic to Translational Research. Clin Chem 2024; 70:81-89. [PMID: 38175586 PMCID: PMC10765989 DOI: 10.1093/clinchem/hvad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Metastasis is the leading cause of cancer-related deaths. Most studies have focused on the primary tumor or on overt metastatic lesions, leaving a significant knowledge gap concerning blood-borne cancer cell dissemination, a major step in the metastatic cascade. Circulating tumor cells (CTCs) in the blood of patients with solid cancer can now be enumerated and investigated at the molecular level, giving unexpected information on the biology of the metastatic cascade. CONTENT Here, we reviewed recent advances in basic and translational/clinical research on CTCs as key elements in the metastatic cascade. SUMMARY Findings from translational studies on CTCs have elucidated the complexity of the metastatic process. Fully understanding this process will open new potential avenues for cancer therapeutic and diagnostic strategies to propose precision medicine to all cancer patients.
Collapse
Affiliation(s)
- Luis Enrique Cortés-Hernández
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|