1
|
Wang Q, Ren H, Ma H, Venkateswaran S, Hsiao BS. Highly Permeable Nanofibrous Composite Nanofiltration Membranes by Controllable Interfacial Copolymerization. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40389379 DOI: 10.1021/acsami.5c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
An ultrathin nanofibrous composite nanofiltration (NF) membrane was developed through controlled interfacial copolymerization where an electrospun sulfonated poly(ether sulfone) (SPES) nanofibrous membrane serves as the substrate and 2,5-diaminobenzenesulfonic acid (2,5-DABSA) and piperazine (PIP) serve as aqueous phase monomers. The integration of the electrostatic interaction and hydrogen bonding between SPES nanofibers and PIP/2,5-DABSA triggered the controlled diffusion rate of monomers into the organic phase, resulting in the fabrication of an ultrathin polyamide barrier layer (∼56 nm). Additionally, a polyamide structure was created through the ternary interfacial copolymerization of PIP/2,5-DABSA and trimesoyl chloride (TMC), which offers high permeability to the composite NF membrane. Meanwhile, the -SO3H groups on 2,5-DABSA issued highly negative charges to the polyamide barrier layer, leading to a significant improvement in the rejection ratio against SO42- and fouling resistance against bovine serum albumin. The impact of 2,5-DABSA monomer on the cross-linking degree and pore size distribution of the polyamide barrier layer was investigated by optimizing the proportion of PIP and 2,5-DABSA monomers in the interfacial polymerization (IP) process. The ion selectivity and robustness of the composite NF membrane was determined and compared with conventional and commercial NF membranes comprehensively. Molecular dynamics simulations were conducted to demonstrate the mechanism of the controlled diffusion of monomers; the cross-linking degree and fractional free volume of the polyamide barrier layer were also evaluated. The NF-M(1:1) composite membrane exhibited a significant enhancement in the permeation flux as 137.4 L/m2·h at 0.5 MPa, which was 4 times higher than that of conventional NF membranes, while maintaining excellent divalent salt rejection against Na2SO4 at 99.4%, compared with 98.0% of the conventional NF membrane, effectively breaking through the trade-off effect in the long-term filtration performance.
Collapse
Affiliation(s)
- Qihang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - He Ren
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Shyam Venkateswaran
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
2
|
Duncan TJ, Behera H, Meng MF, Zhang Z, Marioni N, Tadesse M, Kumar M, Ganesan V. Side-Chain and Ring-Size Effects on Permeability in Artificial Water Channels. J Phys Chem B 2025; 129:659-670. [PMID: 39745026 DOI: 10.1021/acs.jpcb.4c05244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Artificial water channels (AWCs) have emerged as a promising framework for stable water permeation, with water transport rates comparable to aquaporins (3.4-40.3 × 108 H2O/channel/s). In this study, we probe the influence of ring-size and side-chain length on the water permeability observed within a class of AWCs termed ligand-appended pillar[n]arenes (LAPs) that have an adjustable ring-size (m) and side-chain length (n). Through all-atom molecular dynamics simulations, we calculate the permeability of these channels using the collective diffusion model and find their permeabilities. We characterize the mechanistic influence of pillar[n]arene ring-size and side-chain length on the channel water permeability by analyzing the characteristics of the internal permeating water-wire and the surrounding channel structure. We observe that water permeability decreases as a function of increasing ring-size due to increases in hydrophilic contacts between the permeating water-wire and the oxygen groups on the channel wall. Further, we observe an increase in water permeability as a function of side-chain length due to increased partitioning of the channel terminal groups into the hydrophilic blocks of the surrounding bilayer. For the LAP6 channel, with increase in side-chain length, the distance between terminal groups increases and leads to an increase in pore size, thereby enhancing water permeability. In the case of LAP5, as side-chain length increases, the channel displays a compensatory effect between tilt and bend angle due to the flexible side-chains. Such flexibility leads to higher terminal group partitioning in the hydrophilic blocks of the bilayer and extends the permeating water-wire. This increase in water-wire length and hydrophilic block access overcomes the nonmonotonic pore size trend in pillar[5]arene channels.
Collapse
Affiliation(s)
- Tyler J Duncan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael F Meng
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zidan Zhang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nico Marioni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Meron Tadesse
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Pan X, Pan J, Li Z, Gai W, Dong G, Huang M, Huang L. Preparation of N-MG-modified PVDF-CTFE substrate composite nanofiltration membrane and its selective separation of salt and dye. RSC Adv 2024; 14:11992-12008. [PMID: 38638887 PMCID: PMC11024597 DOI: 10.1039/d4ra00359d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) is considered an ideal membrane material for the treatment of complex environmental water due to its exceptional thermal stability and chemical resistance. Thus, to expand its application in the field of nanofiltration (NF) membranes, in this study, N-methylglucamine (N-MG) was used to hydrophilically modify PVDF-CTFE, overcoming the inherent hydrophobicity of PVDF-CTFE as a porous substrate membrane, which leads to difficulties in controlling the interfacial polymerization (IP) reaction and instability of the separation layer structure. The -OH present in N-MG could replace the C-Cl bond in the CTFE chain segment, thus enabling the hydrophilic graft modification of PVDF-CTFE. The influence of the addition of N-MG on the surface and pore structure, wettability, permeability, ultrafiltration separation, and mechanical properties of the PVDF-CTFE substrate membrane was studied. According to the comparison of the comprehensive capabilities of the prepared porous membranes, the M4 membrane with the addition of 1.5 wt% N-MG exhibited the best hydrophilicity and permeability, indicating that it is a desirable modified membrane for use as an NF substrate membrane. The experiments showed that the rejection of Na2SO4 by the NF membrane was 96.5% and greater than 94.0% for various dyes. In the test using dye/salt mixed solution, this membrane exhibited a good separation selectivity (CR/NaCl = 177.8) and long-term operational stability.
Collapse
Affiliation(s)
- Xinyu Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Jian Pan
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Zhuoqun Li
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Wenqiang Gai
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Guangshun Dong
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Min Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| | - Lilan Huang
- School of Materials Science and Engineering, Shandong University of Technology No. 266 West Xincun Road, Zhangdian District Zibo 255000 China
| |
Collapse
|
4
|
Zhang X, Zhang X, Xu L, Zhang G, Meng Q. Amphiphilic Interlayer Regulated Interfacial Polymerization for Constructing Polyamide Nanofiltration Membranes with High Perm-Selectivity of Mono-/Divalent Salts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14321-14332. [PMID: 38447145 DOI: 10.1021/acsami.3c19291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
High-quality thin-film composite (TFC) membranes with high selectivity and permeability have great significance owing to their practical applications, specifically for the accurate differentiation of monovalent and divalent ions. However, the trade-off effect between selectivity and permeability is still a big challenge due to the difficult structure adjustment of the selective layer. Herein, polydopamine (PDA) functionalized with a hydrophobic long alkane chain was first explored as a functional amphiphilic interlayer to synthesize high-quality TFC membranes via a confined interfacial polymerization (IP) reaction. The amphiphilic interlayer not only restricted the formation of the polyamide (PA) matrix in the pores of the substrate but also accelerated spatially more homogeneous polymerization and formed a PA active layer with a more uniform pore size distribution. The method may provide an effective principle for the construction of versatile polyamide-based membranes with high perm-selectivity on various supports. The NaCl/Na2SO4 separation factor of the D-8/PA membrane reached as high as 204.07, while the flux increased up to 25.71 L m-2 h-1 bar-1. This progress provides a more feasible way for the construction of high-quality TFC membranes with a devisable and creative amphiphilic interlayer for industrial application.
Collapse
Affiliation(s)
- Xin Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xu Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lushen Xu
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guoliang Zhang
- Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Meng
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering, Zhejiang University, Yugu Road 38#, 310027 Hangzhou, China
| |
Collapse
|
5
|
Kumar A, Chang DW. Optimized Polymeric Membranes for Water Treatment: Fabrication, Morphology, and Performance. Polymers (Basel) 2024; 16:271. [PMID: 38257070 PMCID: PMC10819000 DOI: 10.3390/polym16020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Conventional polymers, endowed with specific functionalities, are extensively utilized for filtering and extracting a diverse set of chemicals, notably metals, from solutions. The main structure of a polymer is an integral part for designing an efficient separating system. However, its chemical functionality further contributes to the selectivity, fabrication process, and resulting product morphology. One example would be a membrane that can be employed to selectively remove a targeted metal ion or chemical from a solution, leaving behind the useful components of the solution. Such membranes or products are highly sought after for purifying polluted water contaminated with toxic and heavy metals. An efficient water-purifying membrane must fulfill several requirements, including a specific morphology attained by the material with a specific chemical functionality and facile fabrication for integration into a purifying module Therefore, the selection of an appropriate polymer and its functionalization become crucial and determining steps. This review highlights the attempts made in functionalizing various polymers (including natural ones) or copolymers with chemical groups decisive for membranes to act as water purifiers. Among these recently developed membrane systems, some of the materials incorporating other macromolecules, e.g., MOFs, COFs, and graphene, have displayed their competence for water treatment. Furthermore, it also summarizes the self-assembly and resulting morphology of the membrane materials as critical for driving the purification mechanism. This comprehensive overview aims to provide readers with a concise and conclusive understanding of these materials for water purification, as well as elucidating further perspectives and challenges.
Collapse
Affiliation(s)
| | - Dong Wook Chang
- Department of Industrial Chemistry, ECS Core Research Institute, Pukyong National University, Busan 48513, Republic of Korea;
| |
Collapse
|
6
|
Liu L, Liu Y, Chen X, Feng S, Wan Y, Lu H, Luo J. A nanofiltration membrane with outstanding antifouling ability: Exploring the structure-property-performance relationship. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhang L, Liu Y, Zeng G, Yang Z, Lin Q, Wang Y, Wang X, Pu S. Two-dimensional Na-Bentonite@MXene composite membrane with switchable wettability for selective oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|