1
|
Zhang WJ, Sun WZ, Xu JT, Ou BQ, Zhou WQ, Chen L, Ye JW, Pan M. Lanthanide Antenna Amplifier Multiplies the Optical Sensing Efficiency in Phototautomeric Metal-Organic Frameworks. J Am Chem Soc 2025; 147:17486-17496. [PMID: 40340437 DOI: 10.1021/jacs.5c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Metal-organic frameworks (MOFs) incorporating phototautomeric ligands have shown significant potential for new-generation optical sensing devices. It is challenging to enlarge the energy difference of tautomers, which is crucial for improving the sensing efficiency. Herein, we report a novel tactic to amplify the excited-state intramolecular proton transfer (ESIPT) effect via the "antenna effect" in lanthanide sensitization. Specifically, by leveraging the enol (E)-keto (K) phototautomerization process, we achieve precise manipulation of the energy gap between the lowest ligand triplet state and the Eu(III) emitting level through fine-tuning. As a result, the small wavelength shift (10 nm) between the E* and K* emissions is amplified into an approximately 65-fold intensity change in Eu(III) emission. This enhancement is accompanied by a significantly lowered limit of detection (LOD: 0.53 μg/L) and improved sensitivity (0.6955% RH-1) in real-time humidity monitoring across a broad linear detection range (0-95.0% RH). Computational simulations and single-crystal analyses demonstrate two key mechanisms: (1) the appropriate hydrophilic/hydrophobic distribution in the MOF cavity facilitates rapid hydration/dehydration and (2) H2O desorption/adsorption-dependent ESIPT switching governs the deactivation/activation of the Eu(III) 4f excited state. This work presents an optimization approach to enhance energy utilization in MOF-based optical sensing.
Collapse
Affiliation(s)
- Wei-Jie Zhang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Wen-Zhu Sun
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Ji-Tong Xu
- College of Textile Science and Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Bei-Qi Ou
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Wan-Qing Zhou
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Ling Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, P.R. China
| | - Jia-Wen Ye
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, P.R. China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
2
|
Mohit, Verma K, Das A, Thomas KRJ. Highly Conjugated Imine-Linked Donor-Acceptor Covalent Organic Framework for Efficient HCl Sensing and Photocatalytic Oxidation of Benzylamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9800-9809. [PMID: 40202495 DOI: 10.1021/acs.langmuir.5c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Covalent organic frameworks (COFs) show potential as photocatalysts for harnessing solar energy, primarily because of their adjustable band gap, which enhances their ability to harvest light energy. However, their efficiency as photocatalysts is frequently hampered by inadequate charge transfer and fast charge recombination. In this work, we integrated a donor-acceptor pair into the 2D COF material to enhance charge transfer and reduce charge recombination, thereby improving the overall photoactivity. The 2D COF (OML-4) was synthesized through the polycondensation of a 4',4‴,4‴″,4‴‴'-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (ETBC) linker serving as the donor and a 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) linker acting as the acceptor. This imine-linked 2D COF (OML-4) material shows photocatalytic activity toward benzylic amine oxidation in the presence of visible light for the formation of aldehyde molecules in an aqueous medium. This COF was also investigated for HCl gas sensing behavior based on the protonation of the imine linkage and triazine unit present in the COF material. This exhibits exceptionally good sensitivity up to the ppm level and naked eye detection of HCl by changing in color from yellow to red and turning back to yellow in ammonia vapor, showing the reversible and recyclable nature of the COF.
Collapse
Affiliation(s)
- Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kamal Verma
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Sánchez F, Gutiérrez M, Douhal A. Taking Advantage of a Luminescent ESIPT-Based Zr-MOF for Fluorochromic Detection of Multiple External Stimuli: Acid and Base Vapors, Mechanical Compression, and Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56587-56599. [PMID: 37983009 DOI: 10.1021/acsami.3c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescent materials responsive to external stimuli have captivated great attention owing to their potential implementation in noninvasive photonic sensors. Luminescent metal-organic frameworks (LMOFs), a type of porous crystalline material, have emerged as one of the most promising candidates for these applications. Moreover, LMOFs constructed with organic linkers that undergo excited-state intramolecular proton-transfer (ESIPT) reactions are particularly relevant since changes in the surrounding environment induce modifications in their emission properties. Herein, an ESIPT-based LMOF, UiO-66-(OH)2, has been synthesized, spectroscopically and photodynamically characterized, and tested for detecting multiple external stimuli. First, the spectroscopic and photodynamic characterization of the organic linker (2,5-dihydroxyterephthalic acid (DHT)) and the UiO-66-(OH)2 MOF demonstrates that the emission properties are mainly governed by the enol → keto tautomerization, occurring in the organic linker via the ESIPT reaction. Afterward, the UiO-66-(OH)2 MOF proves for the first time to be a promising candidate to detect vapors of acid (HCl) and base (Et3N) toxic chemicals, changes in the mechanical compression (exercised pressure), and changes in the temperature. These results shed light on the potential of ESIPT-based LMOFs to be implemented in the development of advanced optical materials and luminescent sensors.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
4
|
Jiang X, Li W, Liu M, Yang J, Liu M, Gao D, Li H, Ning Z. A Ratiometric Fluorescent Probe Based on RhB Functionalized Tb-MOFs for the Continuous Visual Detection of Fe 3+ and AA. Molecules 2023; 28:5847. [PMID: 37570824 PMCID: PMC10421046 DOI: 10.3390/molecules28155847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, a red-green dual-emitting fluorescent composite (RhB@MOFs) was constructed by introducing the red-emitting organic fluorescent dye rhodamine B (RhB) into metal-organic frameworks (Tb-MOFs). The sample can be used as a ratiometric fluorescent probe, which not only avoids errors caused by instrument and environmental instability but also has multiple applications in detection. The results indicated that the RhB@MOFs exhibited a turned-off response toward Fe3+ and a turned-on response for the continuous detection of ascorbic acid (AA). This ratiometric fluorescent probe possessed high sensitivity and excellent selectivity in the continuous determination of Fe3+ and AA. It is worth mentioning that remarkable fluorescence change could be clearly observed by the naked eye under a UV lamp, which is more convenient in applications. In addition, the mechanisms of Fe3+- and AA-induced fluorescence quench and recovery are discussed in detail. This ratiometric probe displayed outstanding recognition of heavy metal ions and biomolecules, providing potential applications for water quality monitoring and biomolecule determination.
Collapse
Affiliation(s)
- Xin Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Wenwei Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Min Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Jie Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Mengjiao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
- Key Laboratory of Treatment for Special Wastewater of Sichuan Province Higher Education System, Chengdu 610066, China
| | - Daojiang Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
| | - Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China;
| | - Zhanglei Ning
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (X.J.); (W.L.); (M.L.); (J.Y.); (M.L.); (D.G.)
- Sichuan Provincial Engineering Laboratory of Livestock Manure Treatment and Recycling, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
5
|
Gao L, Kou D, Ma W, Zhang S. Biomimetic Metal-Organic Framework-Based Photonic Crystal Sensor for Highly Sensitive Visual Detection and Effective Discrimination of Benzene Vapor. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37329573 DOI: 10.1021/acsami.3c03673] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Due to the large specific surface area and continuous pores in structures, metal-organic frameworks (MOFs) show great advantages in the adsorption of volatile organic compounds (VOCs). Photonic crystal (PC) sensors derived from MOFs are promising for the visual detection of VOC gases. However, they still have problems of low sensitivity and poor color saturation and tunability. Here, inspired by vapor-sensitive scales of Tmesisternus isabellae beetle and scattering light absorption of polydopamine, a porous one-dimensional PC sensor is constructed by combining ZIF-8 with TiO2@PDA nanoparticles. The PC sensor shows significant color changes under different concentrations of benzene vapor and reaches a detection limit of 0.8 g/m3. It has a response time of less than 1 s and maintains stable optical performance after 100 times of reuse. Moreover, ZIF-67 and ZIF-7 are both incorporated into the PCs for comparison; it reveals that ZIF-8 shows superior benzene detecting property. Additionally, the synergistic adsorption of VOCs in inner and outer holes of the ZIF-8 layer is demonstrated by real-time mass monitoring with quartz crystal microbalance with dissipation. This study provides a valuable reference for the fabrication of high-quality MOF-based PC sensors and sensing mechanism study between microscopic molecular adsorption and macroscopic performance.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, P.R. China
| | - Donghui Kou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, P.R. China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, P.R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
6
|
A Ratiometric Fluorescent Sensor Based on Dye/Tb (III) Functionalized UiO-66 for Highly Sensitive Detection of TDGA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196543. [PMID: 36235080 PMCID: PMC9570906 DOI: 10.3390/molecules27196543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Thiodiglycolic acid (TDGA) is a biomarker for monitoring vinyl chloride exposure. Exploring a facile, rapid and precise analysis technology to quantify TDGA is of great significance. In this research, we demonstrate a fluorescent sensor based on dual-emissive UiO-66 for TDGA detection. This ratiometric fluorescent material named C460@Tb-UiO-66-(COOH)2 was designed and synthesized by introducing organic dye 7-diethylamino-4-methylcoumarin (C460) and Tb3+ into UiO-66-(COOH)2. The as-obtained C460@Tb-UiO-66-(COOH)2 samples showed highly selective recognition, excellent anti-interference and rapid response characteristics for the recognition of TDGA. The detection limit is 0.518 mg·mL-1, which is much lower than the threshold of 20 mg·mL-1 for a healthy person. In addition, the mechanism of TDGA-induced fluorescence quenching is discussed in detail. This sensor is expected to detect TDGA content in human urine.
Collapse
|