1
|
Singh RV, Pai MR, Banerjee AM, Shrivastava A, Kumar U, Sinha I, Dutta B, Hassan PA, Ningthoujam RS, Ghosh R, Nath S, Sharma RK, Jagannath, Bapat RD. Interfacial Engineering over Pt-Calcium Ferrite/2D Carbon Nitride Nanosheet p-n Heterojunctions for Superior Photocatalytic Properties. ACS OMEGA 2024; 9:40182-40203. [PMID: 39346866 PMCID: PMC11425653 DOI: 10.1021/acsomega.4c06353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
The present study discloses the fabrication of efficient p-n heterojunctions using n-type polymeric bulk carbon nitride (b-CN, E g = 2.7 eV) or exfoliated nanosheets of carbon nitride (NSCN, E g = 2.9 eV) with p-type spinel ferrite CaFe2O4 (CFO, E g = 1.9 eV) for photocatalytic hydrogen generation. A series of p-n combinations were fabricated and characterized by various techniques. The oxide-carbon nitride interactions, light absorption, band alignment at the interface, and water/H3O+ adsorption capability were elucidated over heterojunctions and correlated with the photocatalytic hydrogen yield. The main developments in the present study are as follows: (1) All heterojunctions were more active than pure phases. (2) The photocatalytic activity trend validated an increase in the lifetime of charge carriers from TRPL. Pt(1 wt %)-CFO(1 wt %)/NSCN (481.5 μmol/h/g under ultraviolet (UV)-visible-simulated light, 147.5 μmol/h/g under CFL illumination for 20 h, τavg = 10.33 ns) > Pt-NSCN > Pt-CFO/b-CN > CFO/NSCN > CFO/b-CN > NSCN > Pt/b-CN > mechanical mixture (MM) of 1 wt %CFO + NSCN-MM > 1 wt %CFO + b-CN-MM > CFO > b-CN (τavg = 4.5 ns). (3) Pt-CFO/NSCN was most active and exhibited 250 times enhanced photocatalytic activity as compared to parent bulk carbon nitride, 6.5 times more active than CFO/NSCN, and twice more active than Pt-NSCN. Thus, enhanced activity is attributed to the smooth channelizing of electrons across p-n junctions. (4) NSCN evidently offered improved characteristics as a support and photocatalyst over b-CN. The exfoliated NSCN occupied a superior few-layer morphology with 0.35 nm width as compared to parent b-CN. NSCN allowed 57% dispersion of 6 nm-sized CFO, while b-CN supported 14% dispersion of 7.8 nm-sized CFO particles, as revealed by small-angle X-ray scattering spectroscopy (SAXS). Sizes of 2-4 nm were observed for Pt nanoparticles in the 1 wt %Pt/1 wt % CFO/NSCN sample. A binding energy shift and an increase in the FWHM of X-ray photoelectron spectroscopy (XPS) core level peaks established charge transfer and enhanced band bending on p-n contact in Pt-CFO/NSCN. FsTAS revealed the decay of photogenerated electrons via trapping in shallow traps (τ1, τ2) and deep traps (τ3). Lifetimes τ1 (3.19 ps, 42%) and τ2 (187 ps, 31%) were higher in NSCN than those in b-CN (τ1 = 2.2 ps, 42%, τ2 = 30 ps, 31%), which verified that the recombination reaction rate was suppressed by 6 times in NSCN (k 2 = 0.53 × 1010 s-1) as compared to b-CN (k 2 = 3.33 × 1010 s-1). Deep traps lie below the H+/H2 reduction potential; thus, electrons in deep traps are not available for photocatalytic H2 generation. (5) The role of CFO in enhancing water adsorption capability was modeled by molecular dynamics. NSCN or b-CN both showed very poor interaction with water molecules; however, the CFO cluster adsorbed H3O+ ions very strongly through the electrostatic interaction between calcium and oxygen (of H3O+). Pt also showed a strong affinity for H2O but not for H3O+. Thus, both CFO and Pt facilitated NSCN to access water molecules, and CFO further sustained the adsorption of H3O+ molecules, crucial for the photocatalytic reduction of water molecules. (6) Band potentials of CFO and NSCN aligned suitably at the interface of CFO/NSCN, resulting in a type-II band structure. Valence band offset (VBO, ΔE VB) and conduction band offset (CBO, ΔE CB) were calculated at the interface, resulting in an effective band gap of 1.41 eV (2.9 - ΔE VB = 1.9 - ΔE CB), much lower than parent compounds. The interfacial band structure was efficient in driving photogenerated electrons from the CB of CFO to the CB of NSCN and holes from the VB of NSCN to the VB of CFO, thus successfully separating charge carriers, as supported by the increased lifetime of charge carriers and favorable photocatalytic H2 yield.
Collapse
Affiliation(s)
- Rajendra V Singh
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400085, India
| | - Mrinal R Pai
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400085, India
| | - Atindra M Banerjee
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400085, India
| | - Anshu Shrivastava
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Uttam Kumar
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Indrajit Sinha
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Puthusserickal A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400085, India
| | - Raghumani S Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400085, India
| | - Rajendra K Sharma
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jagannath
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rudheer D Bapat
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
2
|
Lu Q, Zhang B, Lin J. Wide-direct-band-gap monolayer carbon nitride CN 2: a potential metal-free photocatalyst for overall water splitting. RSC Adv 2024; 14:24226-24235. [PMID: 39104560 PMCID: PMC11299055 DOI: 10.1039/d4ra04756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Two dimensional metal-free semiconductors with high work function have attracted extensive research interest in the field of photocatalytic water splitting. Herein, we have proposed a kind of highly stable monolayer carbon nitride CN2 with an anisotropic structure based on first principles density functional theory. The calculations of electronic structure properties, performed using the HSE06 functional, indicate that monolayer CN2 has a wide direct band gap of 2.836 eV and a high work function of 6.54 eV. And the suitable band edge alignment, high electron mobility (∼103 cm2 V-1 s-1) and visible-light optical absorption suggest that monolayer CN2 has potential on visible-light photocatalytic water splitting at pH ranging from 0 to 14. Moreover, we have observed that uniaxial strain can effectively control the electronic structure properties and optical absorption of monolayer CN2, which can further improve its solar to hydrogen efficiency from 9.6% to 16.02% under 5% uniaxial tension strain along the Y direction. Our calculations have not only proposed a new type of potential metal-free photocatalyst for water splitting but also provided a functional part with high work function for type-I and scheme-Z heterojunction applied in photocatalytic water splitting.
Collapse
Affiliation(s)
- Qiang Lu
- School of Science, Jimei University Xiamen 361021 China
| | - Bofeng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jiahe Lin
- School of Science, Jimei University Xiamen 361021 China
| |
Collapse
|
3
|
Shao M, Shao Y, Pan H. Progress on enhancing the charge separation efficiency of carbon nitride for robust photocatalytic H 2 production. Phys Chem Chem Phys 2024; 26:11243-11262. [PMID: 38567551 DOI: 10.1039/d3cp06333j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Solar-driven H2 production from water splitting with efficient photocatalysts is a sustainable strategy to meet the clean energy demand and alleviate the approaching environmental issues caused by fossil fuel consumption. Among various semiconductor-based photocatalysts, graphitic carbon nitride (g-C3N4) has attracted much attention due to its advantages of long term-stability, visible light response, low cost, and easy preparation. However, the intrinsic Coulombic attraction between charge carriers and the interlayer electrostatic barrier of bulk g-C3N4 result in severe charge recombination and low charge separation efficiency. This perspective summarizes the recent progress in the development of g-C3N4 photocatalytic systems, and focuses on three main modification strategies for promoting charge transfer and minimizing charge recombination, including structural modulation, heterojunction construction, and cocatalyst loading. Based on this progress, we provide conclusions regarding the current challenges of further improving photocatalytic efficiency to fulfill commercial requirements, and propose some recommendations for the design of novel and satisfactory g-C3N4 photocatalysts, which is expected to progress the solar-to-hydrogen conversion.
Collapse
Affiliation(s)
- Mengmeng Shao
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Yangfan Shao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, China
| |
Collapse
|
4
|
Jiang X, Meng S, Nan Z. Singlet Oxygen Formation Mechanism for the H 2O 2-Based Fenton-like Reaction Catalyzed by the Carbon Nitride Homojunction. Inorg Chem 2024; 63:6701-6713. [PMID: 38563144 DOI: 10.1021/acs.inorgchem.3c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The singlet oxygen (1O2) oxidation process activated by metal-free catalysts has recently attracted considerable attention for organic pollutant degradation; however, the 1O2 formation remains controversial. Simultaneously, the catalytic activity of the metal-free catalyst limits the practical application. In this study, carbon nitride (HCCN) containing an intramolecular homojunction, a kind of metal-free catalyst, exhibits excellent activity compared to g-C3N4 (CN) and crystalline carbon nitride (HCN) for tetracycline hydrochloride degradation through the H2O2-based Fenton-like reaction. The rate constant for HCCN increased about 16.1 and 8.9 times than that of CN and HCN, respectively. The activity of HCCN was enhanced, and the dominant reactive oxygen species (ROS) changed from hydroxyl radicals (•OH) to 1O2 with an increase in pH from 4.5 to 11.5. A novel formation pathway of 1O2 was revealed. This result is different from the normal reference, in which •OH is always the primary ROS in the H2O2-based Fenton-like reaction. This study may provide a possible strategy for the investigation on the nonradical oxidation process in the Fenton-like reaction.
Collapse
Affiliation(s)
- Xuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Suhang Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
5
|
Fazil M, Alshehri SM, Mao Y, Ahmad T. Enhanced Photo/Electrocatalytic Hydrogen Evolution by Hydrothermally Derived Cu-Doped TiO 2 Solid Solution Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4063-4076. [PMID: 38354294 DOI: 10.1021/acs.langmuir.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Highly efficient nanocatalysts with a high specific surface area were successfully synthesized by a cost-effective and environmentally friendly hydrothermal method. Structural and elemental purity, size, morphology, specific surface area, and band gap of pristine and 1 to 5% Cu-doped TiO2 nanoparticles were characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), energy dispersive X-ray analysis (EDAX), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography-high resolution mass spectrometry (LC-HRMS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and UV-visible diffused reflectance spectroscopy (UV-DRS) studies. The XPS and EPR findings indicated the successful integration of Cu ions into the TiO2 lattice. UV-DRS and BET surface area investigations revealed that with an increase in dopant concentration, Cu-doped TiO2 NPs show a decrease in band gap (3.19-3.08 eV) and an increase in specific surface area (169.9-188.2 m2/g). Among all compositions, 2.5% Cu-doped TiO2 has shown significant H2 evolution with an apparent quantum yield of 17.67%. Furthermore, the electrochemical water-splitting study shows that 5% Cu-doped TiO2 NPs have superiority over pristine TiO2 for H2 evolution reaction. It was thus revealed that the band gap tuning with the desired dopant concentration led to enhanced photo/electrocatalytic sustainable energy applications.
Collapse
Affiliation(s)
- Mohd Fazil
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
6
|
Gholami Z, Foroughi M, Ahmadi Azqhandi MH. Double ionic liquid reinforced g-CN nanocomposite for an enhanced adsorption of methylparaben: Mechanism, modeling, and optimization. CHEMOSPHERE 2024; 349:141006. [PMID: 38141670 DOI: 10.1016/j.chemosphere.2023.141006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/26/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The efficient removal of organic pollutants, especially pharmaceuticals, from aquatic environments has attracted great attentions. Application of green, multipurpose, and inexpensive compounds is being extensively favorite as adsorbent instead of the traditional chemicals or materials. In this study, sulfonated graphitic carbon nitride was modified with two ionic liquids of polyethyleneimine and choline chloride to create a novel nanocomposite (Sg-CN@IL2 NC) and to use for removal of methylparaben (MeP) from aqueous media. After confirmation of the successful synthesized using different methods, the effective parameters for MeP removal, such as initial MeP concentration, adsorbent dose, sonication time, and temperature, as well as their interactions, were experimentally examined and modeled using response surface methodology (RSM), generalized regression neural network (GRNN), and radial basis function neural network (RBFNN). The models were then optimized using desirability function analysis (DF) and genetic algorithm (GA). The results showed that MeP adsorption: a) can be explained more accurate and reliable using GRNN (AARD% = 11.67, MAE = 15.31, RAE % = 45.42, RRSE % = 55.18, MSE = 435.86, RMSE = 20.70, and R2 = 0.995) than the others; b) reached equilibrium within 7.0 min with a maximum uptake of 267.2 mg/g at a temperature of 45 °C and a neutral pH; c) followed from Freundlich (R2 = 0.999) isotherm and PSO kinetic (R2 = 0.95) models; d) is endothermic and spontaneous; e) is mainly due to π-π stacking, electrostatic and hydrogen bonding interactions. Moreover, Sg-CN@IL2 NC showed an appropriate reusability for up to five cycles. These findings demonstrate the potential of as-prepared NC as an excellent adsorbent for removal of MeP from aqueous media.
Collapse
Affiliation(s)
- Zahra Gholami
- Gachsaran Applied Scientific Training Center 1, Gachsaran, Iran.
| | - Maryam Foroughi
- Department of Environmental Health Engineering, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | |
Collapse
|
7
|
Ali SA, Ahmad T. Decorating Thermodynamically Stable (101) Facets of TiO 2 with MoO 3 for Multifunctional Sustainable Hydrogen Energy and Ammonia Gas Sensing Applications. Inorg Chem 2024; 63:304-315. [PMID: 38146688 DOI: 10.1021/acs.inorgchem.3c03176] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The simultaneous realization of sustainable energy and gas sensors dealing with the emission of pollutants is indispensable as the former thrives on the minimization of the latter. However, there is a dearth of multifunctional nanocatalysts in the literature. This ascertains the importance of multifunctional semiconductors which can be utilized in H2 generation via overall water splitting and in the gas sensing of global pollutants such as NH3. MoO3-decorated TiO2 Z-scheme heterostructures exceptionally escalate the photochemical and photo/electrochemical H2 evolution performance and gas sensing response of TiO2 owing to the synergistic relationship between TiO2 and MoO3. Extensive structural, morphological, and optical characterizations, theoretical studies, and XPS results were exploited to develop a mechanistic framework of photochemical H2 evolution. The photochemical response of the optimum TiO2-MoO3 composition (20 wt % MoO3-TiO2) was found to be nearly 12- and 20-fold superior to the pristine TiO2 and MoO3 photocatalysts, respectively, with the remarkable H2 evolution rate of 9.18 mmol/g/h and AQY of 36.02%. In addition, 20 wt % MoO3-TiO2 also showed advanced photo/electrochemical efficiency with 0.61/0.7 V overpotential values toward HER due to the higher electrochemically active surface area and Tafel slope as low as 65 mV/dec. The gas sensing response of 20 wt % MoO3-TiO2 toward NH3 gas turned out to be 2.5-fold higher than that of the pristine TiO2 gas sensor.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
8
|
Fazal T, Iqbal S, Rehman MU, Hayat A, Shah M, Mahmood S, Shoaib K, Alhujaily A, Murtaza BN, muntaha ST, Althobiti RA, Alzahrani E, Farouk AE, Al-Fawzan FF, Elkaeed EB. Escherichia coli-assisted synthesis of AgFeO2 nanoparticles for antimicrobial, photocatalytic and hydrogen generation applications. MATERIALS CHEMISTRY AND PHYSICS 2024; 312:128680. [DOI: 10.1016/j.matchemphys.2023.128680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Mehtab A, Mao Y, M Alshehri S, Ahmad T. Photo/electrocatalytic hydrogen evolution using Type-II Cu 2O/g-C 3N 4 Heterostructure: Density functional theory addresses the improved charge transport efficiency. J Colloid Interface Sci 2023; 652:1467-1480. [PMID: 37659315 DOI: 10.1016/j.jcis.2023.08.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
One of the most efficient ways for the photogenerated charge carriers is by the development of heterojunction between p-type and n-type semiconductors, which creates an interfacial charge transfer between two semiconductors. By enhancing the bifunctional characteristics for hydrogen generation via photocatalytic and electrocatalytic water splitting reaction, we report the type-II Cu2O/g-C3N4 heterostructure in this article. Due to significantly increased catalytically active sites for the hydrogen evolution reaction (HER) reaction during electrocatalysis and decreased charge transfer resistance, the as-prepared heterostructure exhibits a lower overpotential of 47 and 72 mVdec-1 for the HER and oxygen evolution reactions (OER), respectively, when compared to alone g-C3N4. In addition, Cu2O/g-C3N4 heterostructures have a higher photocatalytic hydrogen evolution of 3492 µmol gcat-1 in the presence of Triethanolamine as a sacrificial agent, which is nearly 2-fold times greater than g-C3N4 (1818 µmol gcat-1) after 5 h of continuous light-irradiation. Moreover, produced heterostructure exhibits 81% of Faradaic efficiency and 18% of apparent quantum yield. This work successfully explains how the rise in water splitting is induced by the transfer of photogenerated electrons in a cascade way from p-type Cu2O to the n-type g-C3N4 using density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Amir Mehtab
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
10
|
Mondal NJ, Sonkar R, Boro B, Ghosh MP, Chowdhury D. Nanocrystalline Ni-Zn spinel ferrites: size-dependent physical, photocatalytic and antioxidant properties. NANOSCALE ADVANCES 2023; 5:5460-5475. [PMID: 37822912 PMCID: PMC10563843 DOI: 10.1039/d3na00446e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023]
Abstract
The physical properties of nanomagnetic particles are expected to be highly dependent on their size. In this study, besides the promising applications of nanocrystalline Ni-Zn spinel ferrites in the area of photocatalysis and free radical scavenging, we present a detailed study with appropriate scientific explanations on the role of size change in modifying and tuning the microstructural, optical and magnetic properties. Three nanostructured Zn0.3Ni0.7Fe2O4 samples of different particle sizes were prepared via the chemical co-precipitation method. Crystallographic phase purity and formation of the spinel cubic phase for all the samples were tested by X-ray diffraction studies. The magnetic properties of the as-synthesized ferrite nanoparticles have been examined thoroughly at 5 K and 300 K. Emergence of superparamagnetic behavior has been observed for the sample with the smallest size ferrite nanoparticles (ZNF-1). The photocatalytic efficiency of all the nanocatalysts was tested on methylene blue (MB) dye and the smallest sized nanocatalyst (ZNF-1) was identified as the most efficient catalyst in degrading MB dye under light illumination. The degradation efficiency was found to decrease with increasing mean particle size of the prepared samples. The antioxidant properties of the prepared ferrite samples were also studied. Here, too, the ZNF-1 sample with the smallest sized nanoparticles exhibited maximum scavenging of free radicals compared to other samples. Hence, the present study clearly demonstrates that smaller-sized Ni-Zn spinel ferrites are efficient materials for tuning the physical properties as well as for use in photocatalytic and antioxidant applications.
Collapse
Affiliation(s)
- Nur Jalal Mondal
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rahul Sonkar
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Bitopan Boro
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Mritunjoy Prasad Ghosh
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
11
|
Ali SA, Ahmed J, Mao Y, Ahmad T. Symbiotic MoO 3-SrTiO 3 Heterostructured Nanocatalysts for Sustainable Hydrogen Energy: Combined Experimental and Theoretical Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12692-12706. [PMID: 37639496 DOI: 10.1021/acs.langmuir.3c01418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Highly efficient Z-scheme MoO3-SrTiO3 heterostructured nanocatalytic systems were engineered via a sol-gel chemical route and exploited in green H2 energy synthesis via overall water splitting. The optical and electronic investigations corroborated the enhancement of the optoelectronic properties of SrTiO3 after the incorporation of MoO3. Emergence of the interfacial charge transfer between SrTiO3 and MoO3 is the driving force, which synergistically triggered the catalytic efficiency of MoO3-SrTiO3 heterostructures. The substitution of Ti4+ by Mo6+ ions led to the suppression of Ti3+ mid-gap states, as the potential involved in the Mo6+/Mo5+ reduction is higher than that in Ti4+/Ti3+. Theoretical studies were employed in order to comprehend the mechanism behind the advancement in the catalytic activity of MoO3-SrTiO3 porous heterostructures, which also possessed a higher surface area. 2% MoO3-SrTiO3 exhibited the optimum catalytic response toward H2 evolution via photochemical, electrochemical, and photo-electrochemical water splitting. 2% MoO3-SrTiO3 evolved H2 at the fourfold higher rate than SrTiO3 with phenomenal 16.06% AQY during photochemical water splitting and photo-degraded MB dye at nearly 88% against the 42% degradation in SrTiO3-led photocatalysis. Electrochemical and photo-electrochemical investigations also manifested the superiority of 2% MoO3-SrTiO3 toward HER, as it exhibited accelerated current and photocurrent densities of 25.02 and 27.45 mA/cm2, respectively, at the 1 V potential. EIS studies demonstrated the improved charge separation efficiency of MoO3-SrTiO3 heterostructures. This work highlights the multi-dimensional approach of obtaining green H2 energy as the sustainable energy source using MoO3@SrTiO3 heterostructures.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
12
|
Ali SA, Sadiq I, Ahmad T. Oxide based Heterostructured Photocatalysts for CO
2
Reduction and Hydrogen Generation. ChemistrySelect 2023. [DOI: 10.1002/slct.202203176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Iqra Sadiq
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| | - Tokeer Ahmad
- Nanochemistry Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
13
|
Guo H, Niu HY, Wang WJ, Wu Y, Xiong T, Chen YR, Su CQ, Niu CG. Schottky barrier height mediated Ti3C2 MXene based heterostructure for rapid photocatalytic water disinfection: Antibacterial efficiency and reaction mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
14
|
Bismuth-Based Multi-Component Heterostructured Nanocatalysts for Hydrogen Generation. Catalysts 2023. [DOI: 10.3390/catal13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Developing a unique catalytic system with enhanced activity is the topmost priority in the science of H2 energy to reduce costs in large-scale applications, such as automobiles and domestic sectors. Researchers are striving to design an effective catalytic system capable of significantly accelerating H2 production efficiency through green pathways, such as photochemical, electrochemical, and photoelectrochemical routes. Bi-based nanocatalysts are relatively cost-effective and environmentally benign materials which possess advanced optoelectronic properties. However, these nanocatalysts suffer back recombination reactions during photochemical and photoelectrochemical operations which impede their catalytic efficiency. However, heterojunction formation allows the separation of electron–hole pairs to avoid recombination via interfacial charge transfer. Thus, synergetic effects between the Bi-based heterostructured nanocatalysts largely improves the course of H2 generation. Here, we propose the systematic review of Bi-based heterostructured nanocatalysts, highlighting an in-depth discussion of various exceptional heterostructures, such as TiO2/BiWO6, BiWO6/Bi2S3, Bi2WO6/BiVO4, Bi2O3/Bi2WO6, ZnIn2S4/BiVO4, Bi2O3/Bi2MoO6, etc. The reviewed heterostructures exhibit excellent H2 evolution efficiency, ascribed to their higher stability, more exposed active sites, controlled morphology, and remarkable band-gap tunability. We adopted a slightly different approach for reviewing Bi-based heterostructures, compiling them according to their applicability in H2 energy and discussing challenges, prospects, and guidance to develop better and more efficient nanocatalytic systems.
Collapse
|
15
|
Recent Advances in g-C 3N 4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules 2023; 28:molecules28010432. [PMID: 36615622 PMCID: PMC9823828 DOI: 10.3390/molecules28010432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 01/05/2023] Open
Abstract
Graphitic carbon nitride (g-C3N4), with facile synthesis, unique structure, high stability, and low cost, has been the hotspot in the field of photocatalysis. However, the photocatalytic performance of g-C3N4 is still unsatisfactory due to insufficient capture of visible light, low surface area, poor electronic conductivity, and fast recombination of photogenerated electron-hole pairs. Thus, different modification strategies have been developed to improve its performance. In this review, the properties and preparation methods of g-C3N4 are systematically introduced, and various modification approaches, including morphology control, elemental doping, heterojunction construction, and modification with nanomaterials, are discussed. Moreover, photocatalytic applications in energy and environmental sustainability are summarized, such as hydrogen generation, CO2 reduction, and degradation of contaminants in recent years. Finally, concluding remarks and perspectives on the challenges, and suggestions for exploiting g-C3N4-based photocatalysts are presented. This review will deepen the understanding of the state of the art of g-C3N4, including the fabrication, modification, and application in energy and environmental sustainability.
Collapse
|
16
|
Z-Scheme CuO x/Ag/TiO 2 Heterojunction as Promising Photoinduced Anticorrosion and Antifouling Integrated Coating in Seawater. Molecules 2023; 28:molecules28010456. [PMID: 36615649 PMCID: PMC9824377 DOI: 10.3390/molecules28010456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023] Open
Abstract
In the marine environment, steel materials usually encounter serious problems with chemical or electrochemical corrosion and fouling by proteins, bacteria, and other marine organisms. In this work, a green bifunctional Z-scheme CuOx/Ag/P25 heterostructure coating material was designed to achieve the coordination of corrosion prevention and antifouling by matching the redox potential of the reactive oxygen species and the corrosion potential of 304SS. When CuOx/Ag/P25 heterostructure was coupled with the protected metal, the open circuit potential under illumination negatively shifted about 240 mV (vs. Ag/AgCl) and the photoinduced current density reached 16.6 μA cm-2. At the same time, more reactive oxygen species were produced by the Z-shape structure, and then the photocatalytic sterilization effect was stronger. Combined with the chemical sterilization of Ag and the oxide of Cu, the bacterial survival rate of CuOx/Ag/P25 was low (0.006%) compared with the blank sample. This design provides a strategy for developing green dual-functional coating materials with photoelectrochemical anticorrosion and antifouling properties.
Collapse
|
17
|
Ahmed J, Ahamad T, Alhokbany N, Majeed Khan MA, Arunachalam P, Amer MS, Alotaibi RM, Alshehri SM. Reduced graphene oxide encapsulated perovskite-type lanthanum cobalt oxide nanoparticles for efficient electrolysis of water to oxygen reactions (OER/ORR). J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Pandit NA, Ahmad T. Tin Oxide Based Hybrid Nanostructures for Efficient Gas Sensing. Molecules 2022; 27:7038. [PMID: 36296632 PMCID: PMC9607226 DOI: 10.3390/molecules27207038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tin oxide as a semiconductor metal oxide has revealed great potential in the field of gas sensing due to its porous structure and reduced size. Especially for tin oxide and its composites, inherent properties such as high surface areas and their unique semiconducting properties with tunable band gaps make them compelling for sensing applications. In combination with the general benefits of metal oxide nanomaterials, the incorporation of metal oxides into metal oxide nanoparticles is a new approach that has dramatically improved the sensing performance of these materials due to the synergistic effects. This review aims to comprehend the sensing mechanisms and the synergistic effects of tin oxide and its composites in achieving high selectivity, high sensitivity and rapid response speed which will be addressed with a full summary. The review further vehemently highlights the advances in tin oxide and its composites in the gas sensing field. Further, the structural components, structural features and surface chemistry involved in the gas sensing are also explained. In addition, this review discusses the SnO2 metal oxide and its composites and unravels the complications in achieving high selectivity, high sensitivity and rapid response speed. The review begins with the gas sensing mechanisms, which are followed by the synthesis methods. Further key results and discussions of previous studies on tin metal oxide and its composites are also discussed. Moreover, achievements in recent research on tin oxide and its composites for sensor applications are then comprehensively compiled. Finally, the challenges and scope for future developments are discussed.
Collapse
Affiliation(s)
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|