1
|
Mattath MN, Pratihar S, Govindaraju T, Shi S. Advanced Logic Computing and Hybrid Crypto-Steganography for Molecular Information Coding Using Gold/Silver Nanoclusters. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18731-18740. [PMID: 40068015 DOI: 10.1021/acsami.4c21488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
In the domain of digital data exchange, ensuring information security is the supreme demand for data storage and transmission. Interlinking cryptographic techniques with steganographic principles can enhance data confidentiality. However, there have been no reports thus far to develop molecular platforms for hybrid crypto-steganography systems. Using our synthesized nanoclusters (BSA-Au/Ag NCs) through bovine serum albumin (BSA) as a versatile scaffold, we fabricated a molecular platform for concatenated logic circuits and molecular keypad lock. Then, we integrate terrestrial direction information transmission through molecular navigation, employing a double block cipher by combining stego key and shifting cipher key techniques to develop a hybrid crypto-steganography system, aimed at enhancing security paradigms. Furthermore, we prioritize information protection by developing an enhanced distress call protocol using a polyalphabetic cipher to activate covert communication capabilities, thereby safeguarding data against potential infiltrators.
Collapse
Affiliation(s)
- Mohamed Nabeel Mattath
- School of Chemical Science and Engineering, Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Shuo Shi
- School of Chemical Science and Engineering, Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, 1239 Siping Rd, Shanghai, 200092, P. R. China
| |
Collapse
|
2
|
Wang LS, Guo YJ, Li YH, Zhao YS, Wei Q, Gao ZF. High-performance electrochemical immunosensor based on bimetallic gold/silver functionalized carbon spheres for CYFRA 21-1 detection and information protection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6802-6809. [PMID: 39264253 DOI: 10.1039/d4ay01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Bimetallic nanomaterial-based systems have been widely utilized across various fields due to their remarkable expandability and flexibility, including nanomedicine, diagnostics, and molecular information technology. Here, we constructed an electrochemical immunosensor using bimetallic gold/silver functionalized carbon spheres (AuAg@CSs) and mesoporous silica nanoparticles (MSNs) for the sensitive determination of cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) and ensuring information protection for textual data. The AuAg@CSs demonstrated exceptional catalytic activity towards hydrogen peroxide, generating a significant current signal. The introduction of CYFRA 21-1 facilitated the binding of MSNs, thereby forming a sandwich-type electrochemical immunosensor that resulted in a notable decrease in current. Notably, the detection limit for CYFRA 21-1 was determined to be 31 fg mL-1, accompanied by high selectivity. Furthermore, extensive textual information can be encrypted and concealed within the current responses of the electrochemical nanosensing system. By establishing a threshold, these current signals can be represented as a series of binary strings, which can subsequently be segmented into shorter strings. Through information coding methods, these shorter binary strings can be assembled and decrypted, ultimately merging into meaningful textual content. This study promotes the synthesis and multifunctional application of bimetallic nanomaterials, providing innovative solutions to enhance the sensing sensitivity of electrochemical immunosensors and paving the way for advancements in molecular digitization.
Collapse
Affiliation(s)
- Lin Sheng Wang
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yu Jian Guo
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yu Hao Li
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Yong Sen Zhao
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Fan YJ, Dong JX, Liu T, Chang YQ, Zhao YS, Li YL, Zhang SM, Cao SY, Su M, Shen SG, Gao ZF. Heterometallic Eu/Zn-MOF-based ratiometric sensing platform: Highly sensitive fluorescence / second-order scattering identification of tetracycline analogs and its molecular informatization applications. Anal Chim Acta 2024; 1319:342980. [PMID: 39122289 DOI: 10.1016/j.aca.2024.342980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 08/12/2024]
Abstract
The traditional preparation method of ratiometric probes faces challenges such as cumbersome preparation and low sensitivity. Thus, there is an urgent need to provide a simple method of preparing a highly sensitive ratiometric probe. Here, Eu3+-doped zinc-based organic framework (Eu/Zn-MOF) was prepared through hydrothermal method for the detection of tetracycline analogs (TCs). Under the same excitation conditions, the probe can simultaneously display valuable fluorescence and second-order scattering signals. The developed probe enabled specific identification and fast detection (1 min) of TCs, including tetracycline, oxytetracycline, doxycycline, and chlortetracycline. The linear detection ranges of tetracycline, oxytetracycline, doxycycline and chlortetracycline were respectively 100 nM - 200 μM, 100 nM - 200 μM, 98 nM - 195 μM, and 97 nM - 291 μM, and the corresponding detection limits were respectively 15.79 nM, 20.83 nM, 15.31 nM, and 28.30 nM. The developed sensor was successfully applied to detect TCs in real samples, and the recovery rate was from 92.54 % to 109.69 % and the relative standard deviation was from 0.04 % to 2.97 %. Moreover, the heterometallic Eu/Zn-MOF was designed as a ratiometric neuron for Boolean logic computing and information encryption based on the specific identification of TCs. As a proof of concept, molecular steganography was successfully employed to encode, store, and conceal information by transforming the specific identification patterns of Eu/Zn-MOF into binary strings. This study is anticipated to advance the application of metal-organic frameworks in logic detection and information security, and bridging the gap between molecular sensors and the realm of information.
Collapse
Affiliation(s)
- Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Tan Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yan Qing Chang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Yong Sen Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Sai Mei Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Song Yun Cao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China
| | - Shi Gang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China.
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
4
|
Wang H, Fan Y, Wang H, Chen Z, Yu S, Hou X. Visual Biosensing with Specific Liquid-Based Interface Behaviors. ACS NANO 2024; 18:7327-7333. [PMID: 38407020 DOI: 10.1021/acsnano.3c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Liquid-based interface behaviors at micro/nano or even smaller scales induced by biomolecules take us into a fascinating realm, fostering a deeper understanding and innovation in visual biosensing. This biosensing technology, grounded in specific liquid-based interface behaviors, redefines how diseases can be detected, monitored, and diagnosed in resource-limited settings, providing rapid, cost-effective, and self-testing solutions to the current healthcare landscape. To date, the technology has witnessed significant advancements in visual sensing, driven by diverse liquid-based materials, advanced nanomanufacturing techniques, and a profound understanding of interface-material interactions. In this Perspective, we discuss and elucidate the interface biosensing mechanisms arising from three types, including liquid-solid, liquid-liquid, and liquid-gas interfaces, and we provide insights into the challenges and future development of visual biosensing applications.
Collapse
Affiliation(s)
- Huimeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yi Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zemin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shijie Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, People's Republic of China
| |
Collapse
|
5
|
Li YL, Min XH, Fan YJ, Dong JX, Wu D, Ren X, Ma HM, Gao ZF, Wei Q, Xia F, Ju H. Photocleavable DNA Nanotube-Based Dual-Amplified Resonance Rayleigh Scattering System for MicroRNA Detection Incorporating Molecular Computing-Cascaded Keypad Lock Functionality. Anal Chem 2024. [PMID: 38324019 DOI: 10.1021/acs.analchem.3c04718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.
Collapse
Affiliation(s)
- Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xue Hong Min
- Equine Science Research and Doping Control Center, Wuhan Business University, Wuhan 430056, P. R. China
| | - Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hong Min Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Zabelina A, Trelin A, Skvortsova A, Zabelin D, Burtsev V, Miliutina E, Svorcik V, Lyutakov O. Bioinspired superhydrophobic SERS substrates for machine learning assisted miRNA detection in complex biomatrix below femtomolar limit. Anal Chim Acta 2023; 1278:341708. [PMID: 37709451 DOI: 10.1016/j.aca.2023.341708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an analytical method with high potential in the field of medicine. The design of SERS substrates, based on specific morphology and/or chemical modification, allow the recognition of the presence of specific analytes with precision close to a single-molecule detection limit. However, the SERS analysis of real samples is significantly complicated by the presence of a large number of "minor" molecules that can shield the signal from the target analyte and make it impossible to determine it in practice. In this work, an advanced SERS approach was used for the detection of cancer-related miRNA-21 in blood plasma, used as a molecular model background. The approach was based on the combination of the biomimetic plasmon-active SERS substrate, its tuned surface chemistry and advanced SERS data analysis, making use of artificial machine learning. In the first step, biomimetic SERS substrates were created using a butterfly wing as a starting template. The substrates were covered by thin Au layer and covalently grafted with hydrophobic chemical moieties to introduce superhydrophobic and water-adhesive properties. The self-concentration of the analyte on the substrates was achieved by minimizing the contact area between the analyte drop and the substrate, which is facilitated by surface superhydrophobicity and additionally enhanced by drop evaporation on the flipped over substrate. Due to the presence of cancer miRNA and blood plasma background, the measured SERS spectra represent a complex of interfering peaks. Thus, their interpretation was carried out using a specially trained machine learning model. As a result, reliable and repeatable quantitative detection of miRNAs below the femtomolar level (up to 10-16 M) on the background of human blood plasma becomes possible.
Collapse
Affiliation(s)
- A Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - A Trelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - A Skvortsova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - D Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - V Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - E Miliutina
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - V Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - O Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic.
| |
Collapse
|
7
|
Liu Y, Dan W, Yan B. A light-operated dual-mode method for neuroblastoma diagnosis based on a Tb-MOF: from biometabolite detection to logic devices. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Tb-DBA can not only serve as a light-operated dual-mechanism driven platform to detect VMA (an early pathological feature of neuroblastoma), but can also produce a different fluorescence response to epinephrine (EP, the metabolic precursor of VMA).
Collapse
Affiliation(s)
- Yanhong Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Wenyan Dan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|