1
|
Mallick A, Mayorga-Martinez CC, Pumera M. Low-dimensional materials for ammonia synthesis. Chem Soc Rev 2025; 54:5021-5080. [PMID: 40260534 DOI: 10.1039/d4cs00025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Ammonia is an essential chemical due to its immense usage in agriculture, energy storage, and transportation. The synthesis of "green" ammonia via carbon-free routes and renewable energy sources is the need of the hour. In this context, photo- and/or electrocatalysis proves to be highly crucial. Low-dimensional materials (LDMs), owing to their unique properties, play a significant role in catalysis. This review presents a vast library of LDMs and broadly categorizes their catalytic performance according to their dimensionality, i.e., zero-, one-, and two-dimensional catalysts. The rational design of LDMs can significantly improve their catalytic performance, particularly in reducing small molecules like dinitrogen, nitrates, nitrites, and nitric oxides to synthesize ammonia via photo- and/or electrocatalysis. Additionally, converting nitrates and nitrites to ammonia can be beneficial in wastewater treatment and be coupled with CO2 co-reduction or oxidative reactions to produce urea and other valuable chemicals, which are also discussed in this review. This review collates the works published in recent years in this field and offers some fresh perspectives on ammonia synthesis. Through this review, we aim to provide a comprehensive insight into the catalytic properties of the LDMs, which are expected to enhance the efficiency of ammonia production and promote the synthesis of value-added products.
Collapse
Affiliation(s)
- Apabrita Mallick
- Advanced Nanorobots and Multiscale Robotics Lab, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic.
| | - Carmen C Mayorga-Martinez
- School of Biomedical Engineering, Peruvian University of Applied Sciences (UPC), Prolongación Primavera 2390, 15023, Lima, Peru
| | - Martin Pumera
- Advanced Nanorobots and Multiscale Robotics Lab, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic.
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
2
|
Wei M, Huang Y, Wei Y, Chen S, Zhang Z, Ge Z, Chen J, Saleem F, Liu W. Emerging Trends in Two-Dimensional Nanomaterials for Electrocatalytic Nitrate-to-Ammonia Conversion. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27671-27696. [PMID: 40317103 DOI: 10.1021/acsami.5c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Electrocatalytic nitrate reduction to ammonia (ENRA) has emerged as a promising strategy due to its dual functionality in wastewater treatment and sustainable ammonia synthesis. Two-dimensional (2D) nanomaterials offer the exposure of highly active sites, tunability of the electronic structure, and enhanced mass transfer capabilities, thereby optimizing the atomic-scale kinetics of the nitrate reduction reaction and improving the ammonia synthesis efficiency. This review provides a comprehensive overview of recent advances in the field of 2D nanomaterials. Initially, fundamental mechanisms are examined. Subsequently, the paper explores the advantages of 2D materials, including metallic variants (e.g., metals, metal oxides, metal hydroxides, metal carbides, metal nitrides, metal borides, and 2D-confined single-atom catalysts) as well as 2D nonmetallic materials, focusing on their roles in nitrate activation and proton-coupled electron transfer processes. Finally, this review provides a prospective development of 2D catalysts, addressing the challenges related to long-term stability under industrial-grade current densities and outlining potential avenues for future research in this area.
Collapse
Affiliation(s)
- Mo Wei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yuting Huang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yuao Wei
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shuo Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ziyi Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Zhou Ge
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jie Chen
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Faisal Saleem
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjing Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
3
|
Duan L, Huang Z, Chen G, Liu M, Liu X, Ma R, Zhang N. CoWO 4 nanoparticles with dual active sites for highly efficient ammonia synthesis. NANOSCALE HORIZONS 2025. [PMID: 40270222 DOI: 10.1039/d5nh00120j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The electrochemical reduction reaction of NO3- (NO3RR) represents a promising green technology for ammonia (NH3) synthesis. Among various electrocatalysts, Co-based materials have demonstrated considerable potential for the NO3RR. However, the NH3 production efficiency of Co-based materials is still limited due to challenges in the competitive hydrogen evolution reaction (HER) and hydrogenating oxynitride intermediates (*NOx). In this study, tungsten (W) and cobalt (Co) elements are co-incorporated to form cobalt tungstate (CoWO4) nanoparticles with dual active sites of Co2+ and W6+, which are applied to optimize the hydrogenation of NOx and decrease the HER, thereby achieving a highly efficient NO3RR to NH3. Theoretical calculations indicate that the Co sites in CoWO4 facilitate the adsorption and hydrogenation of *NOx intermediates, while W sites suppress the competitive HER. These dual active sites work synergistically to enhance NH3 production from the NO3RR. Inspired by these calculations, CoWO4 nanoparticles are synthesized using a simple ion precipitation method, with sizes ranging from 10 to 30 nm. Electrochemical performance tests demonstrate that CoWO4 nanoparticles exhibit a high faradaic efficiency of 97.8 ± 1.5% and an NH3 yield of 13.2 mg h-1 cm-2. In situ Fourier transform infrared spectroscopy characterizes the enhanced adsorption and hydrogenation behaviors of *NOx as well as a minimized HER on CoWO4, which contributes to the high efficiency and selectivity to NH3. This work introduces CoWO4 nanoparticles as an electrocatalytic material with dual active sites, contributing to the design of electrocatalysts for NH3 synthesis.
Collapse
Affiliation(s)
- Lian Duan
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| | - Zhencong Huang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| | - Gen Chen
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| | - Min Liu
- School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0044, Japan.
| | - Ning Zhang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
4
|
Shen Y, Dou Y, Sun L, Huo L, Zhao H. Work Function-Induced Electronic Modulation in NiCo Alloy for Electrochemical Nitrate Reduction. Inorg Chem 2025; 64:7052-7063. [PMID: 40178540 DOI: 10.1021/acs.inorgchem.5c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The rational design of electrocatalysts is of great significance in the production of ammonia (NH3) through a nitrate reduction reaction (NO3-RR). This article proposes a design approach to regulate electron redistribution and intermediate adsorption energy by adjusting the work function of alloy compounds. As an example, the NiCo alloy is successfully electrodeposited on carbon cloth (CC) using deep eutectic solvent (DES) as medium. The results show that the ammonia production rate of the NiCo alloy is as high as 1.55 mmol h-1 cm-2 at -0.38 V vs RHE, with the Faraday efficiency to be 84.94%, and the selectivity 94%. Experimental characterizations combined with density functional theory calculations confirm that alloying is beneficial for reducing the work function of Ni. This in turn adjusts the d-band center of the alloy to approach the Fermi level, changes the rate-determining step during the reduction reaction process, and consequently improves the performance. Eventually, an investigation is conducted on the Zn-NO3- battery fabricated with Ni1Co2/CC. This further exhibits the potential of Ni1Co2/CC within the energy conversion equipment. This study brings fresh design concepts and opportunities to the development of novel electrocatalysts for NO3-RR.
Collapse
Affiliation(s)
- Yan Shen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yingnan Dou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Liping Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Hui Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
5
|
Liu Y, Guo X, Li X, Yang G. Electroreduces nitrate to ammonia and converts to nitrogen through chloride ions by Co 3O 4/GF cathode: Performance, regulation and mechanism. ENVIRONMENTAL RESEARCH 2025; 269:120795. [PMID: 39842761 DOI: 10.1016/j.envres.2025.120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
With the development of cities, the issue of excess nitrate in wastewater has become increasingly severe. Electrochemical technology has garnered significant attention due to its straightforward operation and environmental sustainability. A Co3O4/GF cathode was successfully prepared by depositing Co3O4 onto Graphite felt (GF) using an electrochemical deposition-calcination method. The effects of electrochemical reduction of nitrate (NO3--N) using Co3O4/GF cathodes were investigated. The removal rate of NO3--N achieved an impressive 98.6% with the Co3O4/GF cathode, and the formation rate of reduced ammonia (NH4+-N) was 100% within 2 h at -1.61 V vs. Ag/AgCl voltage. The optimal removal efficiency for NO3--N occurred at a pH of 5. In addition, the electrode demonstrated excellent recyclability and stability. In the presence of Cl-, N2 was produced instead of NH4+ through mediated oxidation. NH4+-N was oxidized to N2 under the action of Cl-. When the concentration of KCl reached 3000 mg/L, the total nitrogen removal rate achieved 98.63%. The reduction mechanism for NO3- reduction was confirmed through electrochemical analysis, scavenging experiments and XPS analysis: on the one hand, it was caused by the Co2+ -Co3+ -Co2+ process. On the other hand, it was caused by indirect reduction mediated by H∗. This study presents an efficient and environmentally friendly method for converting NO3--N to NH4+-N while simultaneously controlling NH4+-N production through chlorine addition, providing a theoretical foundation for the degradation of NO3--N from wastewater.
Collapse
Affiliation(s)
- Yuankun Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Xiaotian Guo
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
6
|
Souza MR, Cardoso ESF, Pinto LMC, Crivelli ISC, Rodrigues CD, Souto RS, Rezende-Filho AT, Lanza MRV, Maia G. Effective Nitrate Electroconversion to Ammonia Using an Entangled Co 3O 4/Graphene Nanoribbon Catalyst. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1295-1310. [PMID: 39729587 PMCID: PMC11783537 DOI: 10.1021/acsami.4c18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
There has been huge interest among chemical scientists in the electrochemical reduction of nitrate (NO3-) to ammonia (NH4+) due to the useful application of NH4+ in nitrogen fertilizers and fuel. To conduct such a complex reduction reaction, which involves eight electrons and eight protons, one needs to develop high-performance (and stable) electrocatalysts that favor the formation of reaction intermediates that are selective toward ammonia production. In the present study, we developed and applied Co3O4/graphene nanoribbon (GNR) electrocatalysts with excellent properties for the effective reduction of NO3- to NH4+, where NH4+ yield rate of 42.11 mg h-1 mgcat-1, FE of 98.7%, NO3- conversion efficiency of 14.71%, and NH4+ selectivity of 100% were obtained, with the application of only 37.5 μg cm-2 of the catalysts (for the best catalyst ─Co3O4(Cowt %55)GNR, only 20.6 μg cm-2 of Co was applied), confirmed by loadings ranging from 19-150 μg cm-2. The highly satisfactory results obtained from the application of the proposed catalysts were favored by high average values of electrochemically active surface area (ECSA) and low Rct values, along with the presence of several planes in Co3O4 entangled with GNR and the occurrence of a kind of "(Co3(Co(CN)6)2(H2O)12)1.333 complex" structure on the catalyst surface, in addition to the effective migration of NO3- from the cell cathodic branch to the anodic branch, which was confirmed by the experiment conducted using a H-cell separated by a Nafion 117 membrane. The in situ FTIR and Raman spectroscopy results helped identify the adsorbed intermediates, namely, NO3-, NO2-, NO, and NH2OH, and the final product NH4+, which are compatible with the proposed NO3- electroreduction mechanism. The Density Functional Theory (DFT) calculations helped confirm that the Co3O4(Cowt %55)GNR catalyst exhibited a better performance in terms of nitrate electroreduction in comparison with Co3O4(Cowt %75), considering the intermediates identified by the in situ FTIR and Raman spectroscopy results and the rate-determining step (RDS) observed for the transition of *NO to *NHO (0.43 eV).
Collapse
Affiliation(s)
- Marciélli
K. R. Souza
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Eduardo S. F. Cardoso
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Leandro M. C. Pinto
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Isabela S. C. Crivelli
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Clauber D. Rodrigues
- State
University of Mato Grosso do Sul, Rua Rogério Luis Rodrigues s/n, Glória de Dourados, Mato Grosso
do Sul 79730-000, Brazil
| | - Robson S. Souto
- São
Carlos Institute of Chemistry, University
of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Ary T. Rezende-Filho
- Faculty
of Engineering, Architecture and Urbanism, and Geography, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Campo Grande, Mato Grosso do Sul 79070-900, Brazil
| | - Marcos R. V. Lanza
- São
Carlos Institute of Chemistry, University
of São Paulo, Avenida Trabalhador São-Carlense 400, São CarlosSão Paulo 13566-590, Brazil
| | - Gilberto Maia
- Institute
of Chemistry, Federal University of Mato
Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| |
Collapse
|
7
|
Li D, Wu S, Yan J, Zhao D, Li Q, Li R, Fan G. Nickel-cobalt alloy nanosheet-decorated three-dimensional titanium dioxide nanobelts electrodeposited on titanium meshes for boosting selective nitrate electroreduction to ammonia. J Colloid Interface Sci 2025; 677:853-861. [PMID: 39173517 DOI: 10.1016/j.jcis.2024.08.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/20/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Electrocatalytic nitrate reduction reaction presents a promising avenue for environmentally friendly ammonia (NH3) synthesis and wastewater treatment. An essential aspect to consider is the meticulous design of electrocatalysts. This study explores the utilization of a Ni-Co alloy nanosheet-decorated three-dimensional titanium dioxide (3D-TiO2) nanobelts electrodeposited on titanium meshes (NixCoy@TiO2/TM) for efficient electrocatalytic NH3 production. The optimized Ni1Co3@TiO2/TM electrode achieves a significant NH3 yield of 676.3 ± 27.1 umol h-1 cm-2 with an impressive Faradaic efficiency (FE) of 95.1 % ± 2.1 % in a 0.1 M KOH solution containing 0.1 M NO3- at -0.4 V versus the reversible hydrogen electrode. Additionally, the electrode demonstrates exceptional electrochemical activity for NH3 synthesis in simulated wastewater, delivering an outstanding NH3 yield of 751.6 ± 44.3 umol h-1 cm-2 with a FE of 96.8 % ± 0.4 % at the same potential of -0.4 V. Moreover, the electrode exhibits minimal variation in current density, NH3 yields and FEs throughout the 24-h stability test and the 20-cycle test, demonstrating its excellent stability and durability. This study offers a straightforward electrodeposited approach for the development of 3D-nanostructured alloys as catalysts for NH3 electrosynthesis from nitrates at room temperature.
Collapse
Affiliation(s)
- Dandan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jingwen Yan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Donglin Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Quan Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ruizhi Li
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
8
|
Zhang B, Zhao J, Qiu H, Chen M, Ren X, Wang H, Wei Q. Boosting Electrochemical Nitrate Reduction to Ammonia by Fe Doped CuO/Co 3O 4 Nanosheet/Nanowire Heterostructures. Chemphyschem 2024; 25:e202400738. [PMID: 39258742 DOI: 10.1002/cphc.202400738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3 -RR) is a novel green method for ammonia synthesis. The development of outstanding NO3 -RR performance is based on reasonable catalyst. Metal oxides have garnered significant attention due to their exceptional electrical conductivity and catalytic properties. Doping serves as an effective strategy for enhancing catalyst performance due to its ability to change the electron cloud distribution and energy levels. In this study, we develop a heterojunction catalyst Fe doped copper oxide nanosheet and cobalt tetroxide nanowire growing on carbon cloth simultaneously (Fe-CuO@Co3O4/CC) via hydrothermal method. The well-designed Fe-CuO@Co3O4/CC has excellent NH3 yield (470.9 μmol h-1 cm-2) and Faraday efficiency (FE: 84.4 %) at -1.2 V versus reversible hydrogen electrode (vs. RHE). The heterostructure increases the specific surface area of the catalyst, and the possibility of contact between the catalyst and NO3 - ions, enhances the catalytic efficiency. In addition, the catalyst has excellent stability and can stably carry out the electrocatalytic nitrate reduction reaction (NO3 -RR), which provides a way for further research on the high-efficiency reduction of nitrate.
Collapse
Affiliation(s)
- Baojian Zhang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jinxiu Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Huancheng Qiu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Mingliang Chen
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
9
|
Li HR, Yi JH, Kang X, Shi MM, Gao R, Bi B, Yan JM, Jiang Q. Promoted Two-Step Ammonia Synthesis with CoOOH/Co foam at Ampere-Level Current Density and Nearly 100% Faraday Efficiency from Air and Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404881. [PMID: 39440673 DOI: 10.1002/smll.202404881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Ammonia (NH3) is regarded as an essential hydrogen storage material in the new energy field, and plasma-electrocatalytic synthesis of NH3 (PESA) is an alternative to the traditional Haber-Bosch process. Here, a bifunctional catalyst CoOOH/CF is proposed to enhance the PESA process. Benefiting from the efficient activation of O2 by CoOOH/CF, NOx - yield rate can reach the highest value of 171.90 mmol h-1 to date. Additionally, CoOOH holds a more negative d-band center, thereby exhibiting weaker adsorption toward NO*, lowering the energy barrier for the rate determining step, resulting in a high NH3 yield rate (302.55 mg h-1 cm-2 at -0.8 V) with ampere-level NH3 current density (2.86 A cm-2 at -0.8 V) and nearly 100% Faraday efficiency (FE, 99.8% at -0.6 V). Moreover, CoOOH/CF achieves an excellent 4.54 g h-1 NH3 yield rate with 97.9% FE in an enlarged electrolyzer, demonstrating the feasibility of PESA on a large scale.
Collapse
Affiliation(s)
- Hong-Rui Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Jian-Hui Yi
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xia Kang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Miao-Miao Shi
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Rui Gao
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Bo Bi
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Jun-Min Yan
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
10
|
Zhu Y, Sun H, Zhang T, Li Q, Xue Z, Yu M, Li J, Wang X. Tailoring Cationic Cobalt Vacancies in Molybdenum-Cobalt Selenide Derived from POM@ZIF-67 for Enhanced Electrocatalysis in Lithium-Oxygen Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23511-23520. [PMID: 39446121 DOI: 10.1021/acs.langmuir.4c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Slow reaction kinetics during redox reactions limits the utilization of the high theoretical energy density of lithium-oxygen batteries (LOBs). Vacancy engineering, a potential strategy for modulating active sites, is critical in the development of high performance catalysts. This study investigates cobalt vacancies in Mo-CoSe2 nanoparticles created by selenization of phosphomolybdic acid (POM) embedded into zeolitic imidazolate framework-67 (ZIF-67). The nanomaterial exhibits an outstanding electrochemical performance, characterized by high specific capacitance and excellent cycle durability. The LOBs with cobalt vacancies in the Mo-CoSe2 electrode material exhibit a discharge capacity of 21 836 mAh g-1 at a current density of 100 mA g-1 and exhibit stable cycling performance over 194 cycles at 300 mA g-1. Additionally, density functional theory (DFT) calculations suggest that the presence of cobalt vacancies increases the distance between the surface selenium atoms and the subsurface cobalt atoms. In addition, cobalt vacancies modify the electronic structure of the d-orbitals, lowering the energy barriers of the reaction and accelerating the reaction kinetics by improving the adsorption of the reactants. The research introduces a strategy for the rational design of efficient cathode materials in LOBs.
Collapse
Affiliation(s)
- Yongming Zhu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110000, China
- School of Mechanical Engineering, Liaoning Institute of Science and Technology, Benxi 117000, China
| | - Hong Sun
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110000, China
| | - Tianyu Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110000, China
| | - Qiang Li
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110000, China
| | - Zhichao Xue
- Department of Science, Shenyang Jianzhu University, Shenyang 110000, China
| | - Mingfu Yu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110000, China
| | - Jie Li
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110000, China
| | - Xue Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110000, China
| |
Collapse
|
11
|
Fan Z, Cao C, Yang X, Yuan W, Qin F, Hu Y, Sun X, Liu G, Tian Y, Xu L. Interfacial Electronic Interactions Promoted Activation for Nitrate Electroreduction to Ammonia over Ag-Modified Co 3O 4. Angew Chem Int Ed Engl 2024; 63:e202410356. [PMID: 39107253 DOI: 10.1002/anie.202410356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NRA) offers a promising pathway for ammonia synthesis. The interfacial electronic interactions (IEIs) can regulate the physicochemical capabilities of catalysts in electrochemical applications, while the impact of IEIs on electrocatalytic NRA remains largely unexplored in current literature. In this study, the high-efficiency electrode Ag-modified Co3O4 (Ag1.5Co/CC) is prepared for NRA in neutral media, exhibiting an impressive nitrate conversion rate of 96.86 %, ammonia Faradaic efficiency of 96.11 %, and ammonia selectivity of ~100 %. Notably, the intrinsic activity of Ag1.5Co/CC is ~81 times that of Ag nanoparticles (Ag/CC). Multiple characterizations and theoretical computations confirm the presence of IEIs between Ag and Co3O4, which stabilize the CoO6 octahedrons within Co3O4 and significantly promote the adsorption of reactants (NO3 -) as well as intermediates (NO2 - and NO), while suppressing the Heyrovsky step, thereby improving nitrate electroreduction efficiency. Furthermore, our findings reveal a synergistic effect between different active sites that enables tandem catalysis for NRA: NO3 - reduction to NO2 - predominantly occurs at Ag sites while NO2 - tends to hydrogenate to ammonia at Co sites. This study offers valuable insights for the development of high-performance NRA electrocatalysts.
Collapse
Affiliation(s)
- Zhenhai Fan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Chunmei Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xingchuan Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wenchuang Yuan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Feiyang Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yating Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaobo Sun
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Guoji Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yun Tian
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Li Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
12
|
Yin S, Guan Z, Zhu Y, Guo D, Chen X, Wang S. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts. ACS NANO 2024; 18:27833-27852. [PMID: 39365283 DOI: 10.1021/acsnano.4c09247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of nitrates in the environment causes serious health and environmental problems. The electrochemical nitrate reduction reaction (e-NO3RR) has received attention for its ability to convert nitrate to value-added ammonia with renewable energy. The key to effective catalytic efficiency is the choice of materials. Group VIII-based catalysts demonstrate great potential for application in e-NO3RR because of their high activity, low cost, and good electron transfer capability. This review summarizes the Group VIII catalysts, including monatomic, bimetallic, oxides, phosphides, and other composites. On this basis, strategies to enhance the intrinsic activity of the catalysts through coordination environment modulation, synergistic effects, defect engineering and hybridization are discussed. Meanwhile, the ammonia recovery process is summarized. Finally, the current research status in this field is prospected and summarized. This review aims to realize the large-scale application of nitrate electrocatalytic reduction in industrial wastewater.
Collapse
Affiliation(s)
- Shiyue Yin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
13
|
Zhou C, Zhang Y, Xie C, Bai J, Li J, Zhang H, Zhu H, Long M, Zhou B, Zheng G. Efficient Electroreduction of Low Nitrate Concentration via Nitrate Self-Enrichment and Active Hydrogen Inducement on the Ce(IV)-Co 3O 4 Cathode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14940-14948. [PMID: 39105779 DOI: 10.1021/acs.est.4c06263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Low concentrations of nitrate (NO3-) widely exist in wastewater, post-treated wastewater, and natural environments; its further disposal is a challenge but meaningful for its discharge goals. Electroreduction of NO3- is a promising method that allows to eliminate NO3- and even generate higher-value NH3. However, the massive side reaction of hydrogen evolution has raised great obstacles in the electroreduction of low concentrations of NO3-. Herein, we present an efficient electroreduction method for low or even ultralow concentrations of NO3- via NO3- self-enrichment and active hydrogen (H*) inducement on the Ce(IV)-Co3O4 cathode. The key mechanism is that the strong oxytropism of Ce(IV) in Co3O4 resulted in two changes in structures, including loose nanoporous structures with copious dual adsorption sites of Ce-Co showing strong self-enrichment of NO3- and abundant oxygen vacancies (Ovs) inducing substantial H*. Ultimately, the bifunctional role synergistically promoted the selective conversion of NH3 rather than H2. As a result, Ce(IV)-Co3O4 demonstrated a NO3- self-enrichment with a 4.3-fold up-adsorption, a 7.5-fold enhancement of NH3 Faradic efficiency, and a 93.1% diminution of energy consumption when compared to Co3O4, substantially exceeding other reported electroreduction cathodes for NO3- concentrations lower than 100 mg·L-1. This work provides an effective treatment method for low or even ultralow concentrations of NO3-.
Collapse
Affiliation(s)
- Changhui Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chaoyue Xie
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Bai
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinhua Li
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haichuan Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui 230026, China
| | - Hong Zhu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
14
|
Zhu A, Liu H, Bu S, Liu K, Luan C, Lin D, Gan G, Zhou Y, Zhang T, Liu K, Hong G, Li H, Zhang W. Facet-Dependent Evolution of Active Components on Spinel Co 3O 4 for Electrochemical Ammonia Synthesis. ACS NANO 2024; 18:22344-22355. [PMID: 39106490 DOI: 10.1021/acsnano.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Spinel cobalt oxides (Co3O4) have emerged as a promising class of catalysts for the electrochemical nitrate reduction reaction (eNO3RR) to ammonia, offering advantages such as low cost, high activity, and selectivity. However, the specific role of crystallographic facets in determining the catalysts' performance remains elusive, impeding the development of efficient catalysts. In this study, we have synthesized various Co3O4 nanostructures with exposed facets of {100}, {111}, {110}, and {112}, aiming to investigate the dependence of the eNO3RR activity on the crystallographic facets. Among the catalysts tested, Co3O4 {111} shows the best performance, achieving an ammonia Faradaic efficiency of 99.1 ± 1.8% with a yield rate of 35.2 ± 0.6 mg h-1 cm-2 at -0.6 V vs RHE. Experimental and theoretical results reveal a transformation process in which the active phases evolve from Co3O4 to Co3O4-x with oxygen vacancy (Ov), followed by a Co3O4-x-Ov/Co(OH)2 hybrid, and finally Co(OH)2. This process is observed for all facets, but the formation of Ov and Co(OH)2 is the most rapid on the (111) surface. The presence of Ov significantly reduces the free energy of the *NH2 intermediate formation from 1.81 to -0.53 eV, and plentiful active sites on the densely reconstructed Co(OH)2 make Co3O4 {111} an ideal catalyst for ammonia synthesis via eNO3RR. This work provides insights into the understanding of the realistic active components, offers a strategy for developing highly efficient Co-based spinel catalysts for ammonia synthesis through tuning the exposed facets, and helps further advance the design and optimization of catalysts in the field of eNO3RR.
Collapse
Affiliation(s)
- Anquan Zhu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Shuyu Bu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kai Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Chuhao Luan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Dewu Lin
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Guoqiang Gan
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Yin Zhou
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Tian Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Kunlun Liu
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Guo Hong
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
15
|
Murphy E, Sun B, Rüscher M, Liu Y, Zang W, Guo S, Chen YH, Hejral U, Huang Y, Ly A, Zenyuk IV, Pan X, Timoshenko J, Cuenya BR, Spoerke ED, Atanassov P. Synergizing Fe 2O 3 Nanoparticles on Single Atom Fe-N-C for Nitrate Reduction to Ammonia at Industrial Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401133. [PMID: 38619914 DOI: 10.1002/adma.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The electrochemical reduction of nitrates (NO3 -) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3 synthesis cost-competitive with current technologies, high NH3 partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe-based materials is leveraged to synthesize a novel active particle-active support system with Fe2O3 nanoparticles supported on atomically dispersed Fe-N-C. The optimized 3×Fe2O3/Fe-N-C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3 of 1.95 A cm-2 at a Faradaic efficiency (FE) for NH3 of 100% and an NH3 yield rate over 9 mmol hr-1 cm-2. Operando XANES and post-mortem XPS reveal the importance of a pre-reduction activation step, reducing the surface Fe2O3 (Fe3+) to highly active Fe0 sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3 particles and Fe-Nx sites at highly cathodic potentials, maintaining a current of -1.3 A cm-2 over 24 hours. This work exhibits an effective and durable active particle-active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.
Collapse
Affiliation(s)
- Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Baiyu Sun
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Yuanchao Liu
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Yu-Han Chen
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Ying Huang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Alvin Ly
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Erik D Spoerke
- Sandia National Laboratories, Energy Storage Technologies & Systems, Albuquerque, NM, 87185, USA
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
16
|
Qi S, Lei Z, Huo Q, Zhao J, Huang T, Meng N, Liao J, Yi J, Shang C, Zhang X, Yang H, Hu Q, He C. Ultrathin High-Entropy Fe-Based Spinel Oxide Nanosheets with Metalloid Band Structures for Efficient Nitrate Reduction toward Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403958. [PMID: 38641326 DOI: 10.1002/adma.202403958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Spinel oxides with tunable chemical compositions have emerged as versatile electrocatalysts, however their performance is greatly limited by small surface area and low electron conductivity. Here, ultrathin high-entropy Fe-based spinel oxides nanosheets are rationally designed (i.e., (Co0.2Ni0.2Zn0.2Mg0.2Cu0.2)Fe2O4; denotes A5Fe2O4) in thickness of ≈4.3 nm with large surface area and highly exposed active sites via a modified sol-gel method. Theoretic and experimental results confirm that the bandgap of A5Fe2O4 nanosheets is significantly smaller than that of ordinary Fe-based spinel oxides, realizing the transformation of binary spinel oxide from semiconductors to metalloids. As a result, such A5Fe2O4 nanosheets manifest excellent performance for the nitrate reduction reaction (NO3 -RR) to ammonia (NH3), with a NH3 yield rate of ≈2.1 mmol h-1 cm-2 at -0.5 V versus Reversible hydrogen electrode, outperforming other spinel-based electrocatalysts. Systematic mechanism investigations reveal that the NO3 -RR is mainly occurred on Fe sites, and introducing high-entropy compositions in tetrahedral sites regulates the adsorption strength of N and O-related intermediates on Fe for boosting the NO3 -RR. The above findings offer a high-entropy platform to regulate the bandgap and enhance the electrocatalytic performance of spinel oxides.
Collapse
Affiliation(s)
- Shuai Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Qihua Huo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jinwen Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Tianchi Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Na Meng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jinlian Liao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Chunyan Shang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| |
Collapse
|
17
|
Santhosh CR, Chinnam S, Madhu GM, Kottam N, Chigurupati S, Sankannavar R. Review on electrocatalytic nitrate reduction to ammonia: advances, challenges and future prospects. IONICS 2024; 30:3091-3099. [DOI: 10.1007/s11581-024-05578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 01/12/2025]
|
18
|
Li Y, Ouyang L, Chen J, Fan X, Sun H, He X, Zheng D, Sun S, Luo Y, Liu Q, Li L, Chu W, Du J, Kong Q, Zheng B, Sun X. High-efficiency electrocatalytic nitrite-to-ammonia conversion on molybdenum doped cobalt oxide nanoarray at ambient conditions. J Colloid Interface Sci 2024; 663:405-412. [PMID: 38412726 DOI: 10.1016/j.jcis.2024.02.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Electrochemical conversion of nitrite (NO2-) contaminant to green ammonia (NH3) is a promising approach to achieve the nitrogen cycle. The slow kinetics of the complex multi-reaction process remains a serious issue, and there is still a need to design highly effective and selective catalysts. Herein, we report that molybdenum doped cobalt oxide nanoarray on titanium mesh (Mo-Co3O4/TM) acts as a catalyst to facilitate electroreduction of NO2- to NH3. Such a catalyst delivers an extremely high Faradaic efficiency of 96.9 % and a corresponding NH3 yield of 651.5 μmol h-1 cm-2 at -0.5 V with strong stability. Density functional theory calculations reveal that the introduction of Mo can induce the redistribution of electrons around Co atoms and further strengthen the adsorption of NO2-, which is the key to facilitating the catalytic performance. Furthermore, the assembled battery based on Mo-Co3O4/TM suggests its practical application value.
Collapse
Affiliation(s)
- Ye Li
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Hang Sun
- Department of Science and Environmental Studies, Faculty of Liberal Arts and Social Science, The Education University of Hong Kong, Hong Kong 999077, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Juan Du
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
19
|
Absalyamova M, Nurmyrza M, Nurlan N, Bae S, Lee W. The effect of carbonized zeolitic imidazolate framework-67 (ZIF-67) support on the reactivity and selectivity of bimetal-catalytic aqueous NO 3- reduction. CHEMOSPHERE 2024; 358:142161. [PMID: 38685335 DOI: 10.1016/j.chemosphere.2024.142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
A metallic catalyst, Cobalt N-doped Carbon (Co@NC), was obtained from Zeolitic-Imidazolate Framework-67 (ZIF-67) for efficient aqueous nitrate (NO3-) removal. This advanced catalyst indicated remarkable efficiency by generating valuable ammonium (NH3/NH4+) via an environmentally friendly production technique during the nitrate treatment. Among various metals (Cu, Pt, Pd, Sn, Ru, and Ni), 3.6%Pt-Co@NC exhibited an exceptional nitrate removal, demonstrating a complete removal of 60 mg/L NO3--N (265 mg/L NO3-) in 30 min with the fastest removal kinetics (11.4 × 10-2 min-1) and 99.5% NH4+ selectivity. The synergistic effect of bimetallic Pt-Co@NC led to 100% aqueous NO3- removal, outperforming the reactivity by bare ZIF-67 (3.67%). The XPS analysis illustrated Co's promotor role for NO3- reduction to less oxidized nitrogen species and Pt's hydrogenation role for further reduction to NH4+. The durability test revealed a slight decrease in NO3- removal, which started from the third cycle (95%) and slowly proceeded to the sixth cycle (80.2%), while NH4+ selectivity exceeded 82% with no notable Co or Pt leaching throughout seven consecutive cycles. This research shed light on the significance of the impregnated Pt metal and Co exposed on the Co@NC surface for the catalytic nitrate treatment, leading to a sustainable approach for the effective removal of nitrate and economical NH4+ production.
Collapse
Affiliation(s)
- Miriam Absalyamova
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Meiirzhan Nurmyrza
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan; Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Nurbek Nurlan
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Sungjun Bae
- Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Woojin Lee
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan; Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
20
|
Fang L, Lu S, Wang S, Yang X, Song C, Yin F, Liu H. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations. Chemistry 2024; 30:e202303249. [PMID: 37997008 DOI: 10.1002/chem.202303249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a "two birds-one stone" method that targets remediation of NO3 --containing sewage and production of valuable NH3. The exploitation of advanced catalysts with high activity, selectivity, and durability is a key issue for the efficient catalytic performance. Among various strategies for catalyst design, defect engineering has gained increasing attention due to its ability to modulate the electronic properties of electrocatalysts and optimize the adsorption energy of reactive species, thereby enhancing the catalytic performance. Despite previous progress, there remains a lack of mechanistic insights into the regulation of catalyst defects for NO3 - reduction. Herein, this review presents insightful understanding of defect engineering for NO3 - reduction, covering its background, definition, classification, construction, and underlying mechanisms. Moreover, the relationships between regulation of catalyst defects and their catalytic activities are illustrated by investigating the properties of electrocatalysts through the analysis of electronic band structure, charge density distribution, and controllable adsorption energy. Furthermore, challenges and perspectives for future development of defects in NO3RR are also discussed, which can help researchers to better understand the defect engineering in catalysts, and also inspire scientists entering into this promising field.
Collapse
Affiliation(s)
- Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| |
Collapse
|
21
|
Yan J, Liu P, Li J, Huang H, Song W. Structure and Electron Engineering for Nitrate Electrocatalysis to Ammonia: Identification and Modification of Active Sites in Spinel Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308617. [PMID: 37985367 DOI: 10.1002/smll.202308617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Cobalt spinel oxides, which consist of tetrahedral site (AO4) and octahedral site (BO6), are a potential group of transition metal oxides (TMO) for electrocatalytic nitrate reduction reactions to ammonia (NRA). Identifying the true active site in spinel oxides is crucial to designing advanced catalysts. This work reveals that the CoO6 site is the dominant site for NRA through the site substitution strategy. The suitable electronic configuration of Co at the octahedral site leads to a stronger interaction between the Co d-orbital and the O p-orbital in O-containing intermediates, resulting in a high-efficiency nitrate-to-ammonia reduction. Furthermore, the substitution of metallic elements at the AO4 site can affect the charge density at the BO6 site via the structure of A-O-B. Thereafter, Ni and Cu are introduced to replace the tetrahedral site in spinel oxides and optimize the electronic structure of CoO6. As a result, NiCo2O4 exhibits the best activity for NRA with an outstanding yield of NH3 (15.49 mg cm-2 h-1) and FE (99.89%). This study introduces a novel paradigm for identifying the active site and proposes an approach for constructing high-efficiency electrocatalysts for NRA.
Collapse
Affiliation(s)
- Jianyue Yan
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Peng Liu
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiawen Li
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hao Huang
- Department of Microsystems, University of South-Eastern Norway, Borre, 3184, Norway
| | - Wenbo Song
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
23
|
Zheng X, Hao J, Zhuang Z, Kang Q, Wang X, Lu S, Duan F, Du M, Zhu H. Emerging electrospinning platform toward nanoparticle to single atom transformation for steering selectivity in ammonia synthesis. NANOSCALE 2024; 16:4047-4055. [PMID: 38354061 DOI: 10.1039/d3nr05331h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The rising top-down synthetic methodologies for transition metal single-atom catalysts (SACs) require controlled movement of metal atoms through the substrates; however, their direct transportation towards the ideal carrier remains a huge challenge. Herein, we showed a "top down" strategy for Co nanoparticles (NPs) to Co SA transformation by employing electrospun carbon nanofibers (CNFs) as atom carriers. Under high-temperature conditions, the Co atoms migrate from the surfaces of Co NPs and are then anchored by the surrounding carbon to form a Co-C3O1 coordination structure. The synthesized Co SAs/CNF electrocatalyst exhibits excellent electrocatalytic nitrate reduction reaction (NO3RR) activity with an NH3 yield of 0.79 mmol h-1 cm-2 and Faraday efficiency (FE) of 91.3% at -0.7 V vs. RHE in 0.1 M KNO3 and 0.1 M K2SO4 electrolytes. The in situ electrochemical characterization suggests that the NOH pathway is preferred by Co SAs/CNFs, and *NO hydrogenation and deoxygenation easily occur on Co SAs due to the small adsorption energy between Co SAs and *NO, as calculated by theoretical calculations. It is revealed that a small energy barrier (0.45 eV) for the rate determining step (RDS) ranges from *NO to *NOH and a strong capability for inhibiting hydrogen evolution (HER) significantly promotes the NH3 selectivity and activity of Co SAs/CNFs.
Collapse
Affiliation(s)
- Xuan Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jiace Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zechao Zhuang
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Qi Kang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaofan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Hu Q, Qi S, Huo Q, Zhao Y, Sun J, Chen X, Lv M, Zhou W, Feng C, Chai X, Yang H, He C. Designing Efficient Nitrate Reduction Electrocatalysts by Identifying and Optimizing Active Sites of Co-Based Spinels. J Am Chem Soc 2024; 146:2967-2976. [PMID: 38155548 DOI: 10.1021/jacs.3c06904] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Cobalt-based spinel oxides (i.e., Co3O4) are emerging as low-cost and selective electrocatalysts for the electrochemical nitrate reduction reaction (NO3-RR) to ammonia (NH3), although their activity is still unsatisfactory and the genuine active site is unclear. Here, we discover that the NO3-RR activity of Co3O4 is highly dependent on the geometric location of the Co site, and the NO3-RR prefers to occur at octahedral Co (CoOh) rather than tetrahedral Co (CoTd) sites. Moreover, CoOhO6 is electrochemically transformed to CoOhO5 along with the formation of O vacancies (Ov) during the process of NO3-RR. Both experimental and theoretic results reveal that in situ generated CoOhO5-Ov configuration is the genuine active site for the NO3-RR. To further enhance the activity of CoOh sites, we replace inert CoTd with different contents of Cu2+ cations, and a volcano-shape correlation between NO3-RR activity and electronic structures of CoOh is observed. Impressively, in 1.0 M KOH, (Cu0.6Co0.4)Co2O4 with optimized CoOh sites achieves a maximum NH3 Faradaic efficiency of 96.5% with an ultrahigh NH3 rate of 1.09 mmol h-1 cm-2 at -0.45 V vs reversible hydrogen electrode, outperforming most of other reported nonprecious metal-based electrocatalysts. Clearly, this work paves new pathways for boosting the NO3-RR activity of Co-based spinels by tuning local electronic structures of CoOh sites.
Collapse
Affiliation(s)
- Qi Hu
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Shuai Qi
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qihua Huo
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yuxin Zhao
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Jianju Sun
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xinbao Chen
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Miaoyuan Lv
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Weiliang Zhou
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chao Feng
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaoyan Chai
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Hengpan Yang
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Chuanxin He
- College of Chemistry Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
25
|
Chen Y, He J, Pang H, Yu D, Jiang P, Hao X, Zhang J. Electrochemical denitrification by a recyclable cobalt oxide cathode: Rapid recovery and selective catalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132870. [PMID: 37924706 DOI: 10.1016/j.jhazmat.2023.132870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Cathodic aging and fouling have presented significant challenges in the realm of electrochemical denitrification for engineering applications. This study focused on the development of an economical and recyclable nanoporous Co3O4/Co cathode through anodization for nitrate reduction. What distinguished our cathode was its exceptional sustainability. Cobalt from the inactive catalyst could be reclaimed onto the substrate, enabling the regeneration of a new Co3O4 layer. This innovative approach resulted in an exceptionally low Co catalyst consumption, a mere 1.936 g/1 kg N, making it the most cost-effective choice among all Co-based cathodes. The Co3O4 catalyst exhibited a truncated octahedron structure, primarily composed of surface Co2+ ions. Density functional theory calculations confirmed that the bonding between the O atom in NO3- ions and the Co atom in Co3O4 was thermodynamically favorable, with a free energy of - 0.89 eV. Co2+ ions acted as "electron porters" facilitating electron transfer through a redox circle Co2+-Co3+-Co2+. However, the presence of two energy barriers (*NH2NO to *N2 and *N2 to N2) with respective heights of 0.83 eV and 1.17 eV resulted in a N2 selectivity of 9.84% and an NH3 selectivity of 90.02%. In actual wastewater treatment, approximately 78% of TN and 93% of NO3- were successfully removed after 3 h, consistent with the prediction kinetic model. This anodization-based strategy offers a significant advantage in terms of long-term cost and presents a new paradigm for electrode sustainability.
Collapse
Affiliation(s)
- Yiwen Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Heliang Pang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dehai Yu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peigeng Jiang
- North China Municipal Engineering Design & Research Institute Co., Ltd, Tianjin 300202, China Guangzhou University, Guangzhou 510006, PR China
| | - Xiujuan Hao
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
26
|
Liu Y, Jiang X, Zhang Y, Li H, Huang W, Yang Y, Ye M, Liu Y. The interface-mediated electron structure tuning of RuO x-Co 3O 4 nano-particles for efficient electrocatalytic nitrate reduction. Dalton Trans 2023; 53:162-170. [PMID: 38018516 DOI: 10.1039/d3dt03318j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The energy-intensive processes for the industrial production of ammonia necessitates the development of new methods to be proposed that will aid in reducing the global energy consumption. Specifically, the electrocatalytic nitrate reduction reaction (NO3RR) to produce ammonia is more thermodynamically feasible than the electrocatalytic nitrogen reduction reaction (NRR). However, it is hindered by a low catalytic activity due to its complex reaction pathways. Herein, we synthesized a novel electrocatalyst, RuOx-Co3O4 nanoparticles, with abundant interfaces, which exhibited an enhanced catalytic activity for efficient ammonia synthesis. This catalyst delivered a partial current density of 65.8 mA cm-2 for NH3 production, a faradaic efficiency (FE) of 89.7%, and a superior ammonia yield rate of up to 210.5 μmol h-1 cm-2 at -0.6 V vs. RHE. X-ray photoelectron and Raman spectroscopy revealed that the formed interfacial Ru-O-Co bond can decorate the electronic structures of the active sites and accelerate the absorption of NO3-, thus promoting the production of ammonia.
Collapse
Affiliation(s)
- Yang Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hangqi Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Weidong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuanteng Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Minghao Ye
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
27
|
Ramesh A, Maladan A, Sahu PK, Duvvuri S, Subrahmanyam C. Rod-Shaped Spinel Co 3O 4 and Carbon Nitride Heterostructure-Modified Fluorine-Doped Tin Oxide Electrode as an Electrochemical Transducer for Efficient Sensing of Hydrazine. ACS APPLIED BIO MATERIALS 2023; 6:4894-4905. [PMID: 37814422 DOI: 10.1021/acsabm.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Engineering low-cost and efficient materials for sensing hydrazine (HA) is critical given the adverse effects of high concentrations on humans. We report an efficient electrode made up of rod-shaped Co3O4/g-C3N4 (Co3O4/graphitic carbon nitride (GCN))-coated fluorine-doped tin oxide as a desirable electrode for the detection of HA. GCN is synthesized by the thermal decomposition of melamine, Co3O4, and the heterostructure is grown by a hydrothermal process. The as-prepared materials were characterized by using spectroscopic and microscopic techniques. The voltammetric studies showed that HA can be oxidized at a lower onset potential of 0.24 V vs reference Ag/AgCl, and the composite yielded a significantly enhanced oxidation peak current than the pure components because of the high electrocatalytic activity and the synergy between Co3O4 and GCN. By employing chronoamperometry, the proposed sensor can detect HA in a wide range with a high sensitivity of 819.52 μA mM-1 cm-2 and a detection limit of 3.14 μM. The high conductivity of Co3O4, enhanced electroactive surface area, the rich redox couples of Co2+/Co3+, and the additional catalytic sites from GCN are responsible for the high performance of the heterostructure.
Collapse
Affiliation(s)
- Asha Ramesh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Aswathi Maladan
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Pravat Kumar Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| | - Suryakala Duvvuri
- Department of Chemistry, GITAM University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Ch Subrahmanyam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India
| |
Collapse
|
28
|
Wu S, Jiang Y, Luo W, Xu P, Huang L, Du Y, Wang H, Zhou X, Ge Y, Qian J, Nie H, Yang Z. Ag-Co 3 O 4 -CoOOH-Nanowires Tandem Catalyst for Efficient Electrocatalytic Conversion of Nitrate to Ammonia at Low Overpotential via Triple Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303789. [PMID: 37822155 PMCID: PMC10667848 DOI: 10.1002/advs.202303789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Indexed: 10/13/2023]
Abstract
The electrocatalytic conversion of nitrate (NO3 ‾) to NH3 (NO3 RR) offers a promising alternative to the Haber-Bosch process. However, the overall kinetic rate of NO3 RR is plagued by the complex proton-assisted multiple-electron transfer process. Herein, Ag/Co3 O4 /CoOOH nanowires (i-Ag/Co3 O4 NWs) tandem catalyst is designed to optimize the kinetic rate of intermediate reaction for NO3 RR simultaneously. The authors proved that NO3 ‾ ions are reduced to NO2 ‾ preferentially on Ag phases and then NO2 ‾ to NO on Co3 O4 phases. The CoOOH phases catalyze NO reduction to NH3 via NH2 OH intermediate. This unique catalyst efficiently converts NO3 ‾ to NH3 through a triple reaction with a high Faradaic efficiency (FE) of 94.3% and a high NH3 yield rate of 253.7 μmol h-1 cm-2 in 1 M KOH and 0.1 M KNO3 solution at -0.25 V versus RHE. The kinetic studies demonstrate that converting NH2 OH into NH3 is the rate-determining step (RDS) with an energy barrier of 0.151 eV over i-Ag/Co3 O4 NWs. Further applying i-Ag/Co3 O4 NWs as the cathode material, a novel Zn-nitrate battery exhibits a power density of 2.56 mW cm-2 and an FE of 91.4% for NH3 production.
Collapse
Affiliation(s)
- Shilu Wu
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yingyang Jiang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Wenjie Luo
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Peng Xu
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Longlong Huang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yiwen Du
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Hui Wang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of ZhejiangCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhou325035P. R. China
| |
Collapse
|
29
|
Fan X, Liu C, Li Z, Cai Z, Ouyang L, Li Z, He X, Luo Y, Zheng D, Sun S, Wang Y, Ying B, Liu Q, Farouk A, Hamdy MS, Gong F, Sun X, Zheng Y. Pd-Doped Co 3 O 4 Nanoarray for Efficient Eight-Electron Nitrate Electrocatalytic Reduction to Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303424. [PMID: 37330654 DOI: 10.1002/smll.202303424] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Ammonia (NH3 ) is an indispensable feedstock for fertilizer production and one of the most ideal green hydrogen rich fuel. Electrochemical nitrate (NO3 - ) reduction reaction (NO3 - RR) is being explored as a promising strategy for green to synthesize industrial-scale NH3 , which has nonetheless involved complex multi-reaction process. This work presents a Pd-doped Co3 O4 nanoarray on titanium mesh (Pd-Co3 O4 /TM) electrode for highly efficient and selective electrocatalytic NO3 - RR to NH3 at low onset potential. The well-designed Pd-Co3 O4 /TM delivers a large NH3 yield of 745.6 µmol h-1 cm-2 and an extremely high Faradaic efficiency (FE) of 98.7% at -0.3 V with strong stability. These calculations further indicate that the doping Co3 O4 with Pd improves the adsorption characteristic of Pd-Co3 O4 and optimizes the free energies for intermediates, thereby facilitating the kinetics of the reaction. Furthermore, assembling this catalyst in a Zn-NO3 - battery realizes a power density of 3.9 mW cm-2 and an excellent FE of 98.8% for NH3 .
Collapse
Affiliation(s)
- Xiaoya Fan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Chaozhen Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zerong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohamed S Hamdy
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Feng Gong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yinyuan Zheng
- Huzhou Key Laboratory of Translational Medicine, First People's Hospital affiliated to Huzhou University, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
30
|
Chen M, Zhuang S, Cheng J, Miao J, Tai X, Gu Y, Qin Z, Zhang J, Tang Y, Sun Y, Wan P. Nano-Polycrystalline Cu Layer Interlaced with Ti 3+-Self-Doped TiO 2 Nanotube Arrays as an Electrocatalyst for Reduction of Nitrate to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16680-16691. [PMID: 36961955 DOI: 10.1021/acsami.2c22399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is considered as a promising strategy to degrade nitrate-containing wastewater and synthesize recyclable ammonia at atmospheric pressure and room temperature. In this work, the copper oxides-derived nano-polycrystalline Cu (NPC Cu) was integrated with Ti3+-self-doped TiO2 nanotube arrays (NTA) to fabricate the NPC Cu/H-TiO2 NTA. Ti3+-self-doped TiO2 NTAs and the NPC Cu facilitate electron transfer and mass transportation and create abundant active sites. The unique nanostructure in which Cu nano-polycrystals interlace with the TiO2 nanotube accelerates the electron transfer from the substrate to surface NPC Cu. The density functional theory calculations confirm that the built-in electric field between Cu and TiO2 improves the adsorption characteristic of the NPC Cu/H-TiO2 NTA, thereby converting the endothermic NO3- adsorption step into an exothermic process. Therefore, the high NO3- conversion of 98.97%, the Faradic efficiency of 95.59%, and the ammonia production yield of 0.81 mg cm-2 h-1 are achieved at -0.45 V vs reversible hydrogen electrode in 10 mM NaNO3 (140 mg L-1)-0.1 M Na2SO4. This well-designed NPC Cu/H-TiO2 NTA as an effective electrocatalyst for the 8e- NO3RR possesses promising potential in the applications of ammonia production.
Collapse
Affiliation(s)
- Mingfei Chen
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
- Changchun Green Drive Hydrogen Technology Co., Ltd, China-Korea Building, No. 1577 Jinhui Road, China-Kore (Changchun) International Cooperation Demonstration Zone, Changchun 130102, China
| | - Shuxian Zhuang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
- Carbon Neutrality Research Center, State Power Investment Corporation Central Research Institute, South Park, Beijing Future Science Park, Changping District, Beijing 102209, China
| | - Jinlu Cheng
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Jinyuan Miao
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Xuefeng Tai
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Yinghua Gu
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Zhiwei Qin
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Jinpeng Zhang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Yang Tang
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Yanzhi Sun
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Pingyu Wan
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
31
|
Lin F, Chen Z, Gong H, Wang X, Chen L, Yu H. Oxygen Vacancy Induced Strong Metal-Support Interactions on Ni/Ce 0.8Zr 0.2O 2 Nanorod Catalysts for Promoting Steam Reforming of Toluene: Experimental and Computational Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4495-4506. [PMID: 36926903 DOI: 10.1021/acs.langmuir.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To develop an efficient Ni-based steam reforming catalyst for tar removal from the products of biomass gasification, Ni/Ce0.8Zr0.2O2 nanorods were designed. The Ni/Ce0.8Zr0.2O2 nanorod was used as a catalyst in steam reforming of toluene, which was regarded as a model compound of biomass gasification tar. At gas hourly space velocity (GHSV) of 24,000 h-1 and Ni loading of 5 wt %, the 5Ni/Ce0.8Zr0.2O2 nanorod catalyst achieved 100% of toluene conversion at 600 °C. After 10 h of operation, toluene conversion still reached 87.6%, and the carbon deposition rate was only 1.9 mg/gcat h-1. The experimental results demonstrated that the 5Ni/Ce0.8Zr0.2O2 nanorod catalyst showed much higher catalytic activity and coking resistance than other Ni-based catalysts reported in the literature. Through different characterization technologies and density functional theory calculations, it was confirmed that the excellent catalytic performance was attributed to the strong metal-support interaction (SMSI) between Ni and the {100} facet of Ce0.8Zr0.2O2. The special surface structure of {100} allowed Ni atoms to anchor to the surface oxygen vacancies and maintained its reduced state by electron transport between surface atoms. The anchored Ni facilitated oxygen vacancies formation and H2O dissociation on the support, while the support modulated the electronic structure of Ni, which promoted its ability to toluene activation.
Collapse
Affiliation(s)
- Feng Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Zezhi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Huijuan Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
- Center of Materials Analysis, Nanjing University, Nanjing 210093, PR China
| | - Xiaoshu Wang
- Center of Materials Analysis, Nanjing University, Nanjing 210093, PR China
| | - Lu Chen
- Center of Materials Analysis, Nanjing University, Nanjing 210093, PR China
| | - Huiqiang Yu
- Center of Materials Analysis, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
32
|
Zhang G, Li X, Chen K, Guo Y, Ma D, Chu K. Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes. Angew Chem Int Ed Engl 2023; 62:e202300054. [PMID: 36734975 DOI: 10.1002/anie.202300054] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3 RR, showing a maximum NH3 -Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h-1 cm-2 at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3 RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 - to form intermediates, while Fe sites dissociate H2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3 - -to-NH3 conversion.
Collapse
Affiliation(s)
- Guike Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
33
|
Mattarozzi L, Cattarin S, Comisso N, Musiani M, Vázquez‐Gómez L, Verlato E. Electrodeposition of Ni−Rh Alloys and their Use as Cathodes for Nitrate Reduction in Alkaline Solutions. ChemElectroChem 2023. [DOI: 10.1002/celc.202201122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Luca Mattarozzi
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Sandro Cattarin
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Nicola Comisso
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Marco Musiani
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Lourdes Vázquez‐Gómez
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| | - Enrico Verlato
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia ICMATE-CNR C.so Stati Uniti 4 35127 Padova Italy
| |
Collapse
|
34
|
Unveiling selective nitrate reduction to ammonia with Co3O4 nanosheets/TiO2 nanobelt heterostructure catalyst. J Colloid Interface Sci 2023; 630:714-720. [DOI: 10.1016/j.jcis.2022.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
|