1
|
Feng Z, Wan T, Yin T, Liu C, Zhang S, Jia H, Zhu Y, Guan P, Chen F, Li M, Chu D. Constructing Water-Retaining/Ion-Regulating Bi-Layers for Highly Durable, All-Climate, Efficient Moisture Electric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2416008. [PMID: 40317535 DOI: 10.1002/adma.202416008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Moisture electric generators (MEGs), which can directly convert chemical energy in moisture into electricity have demonstrated great potential for powering wearable electronics and IoT devices. However, state-of-the-art MEGs suffer from transient power output and rely on high relative humidity (RH) as well as mild temperature, hampering their practical applications. Herein, a novel high-performance MEG is reported by designing ionic hydrogel and graphene oxide dual-layered devices, where the water-enriched hydrogel enables continuous power outputs under various conditions while the inherent layering nanochannels effectively regulate ion diffusion for stable and efficient performance improvement. The MEG can generate a maximum power density of 71.7 µW cm-2 and continuously output 0.6 V for more than 1400 h at room condition without degradation. Most importantly, the developed generator can operate well from -20 °C to 50 °C, and an ultrahigh and stable voltage of 1.2 V is realized at RH of 0% owing to the dynamic water equilibrium in the system. The MEG also displays excellent self-restoration capabilities, demonstrating high cyclic-performing potential. This work may provide important guidelines in designing long-life all climate applicable energy harvesting devices through designing synergistic bilayers architecture.
Collapse
Affiliation(s)
- Ziheng Feng
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Yin
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chao Liu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuo Zhang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Haowei Jia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yanzhe Zhu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Fandi Chen
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Yang L, Zhang L, Yong YC, Sun D. A Direct Current Self-Sustained Moisture-Electric Generator with 1 D/2D Hierarchical Nanostructure for Continuous Operation of Off-Grid Electronics. ACS NANO 2024; 18:28956-28967. [PMID: 39373661 DOI: 10.1021/acsnano.4c09494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Ubiquitous moisture is a colossal reservoir of clean energy, and the emergence of moisture-electric generators (MEGs) is expected to provide direct power support for off-grid electronic devices anytime and anywhere. However, most MEGs rely on auxiliary energy storage devices and rectifier circuits to drive small electronic devices, which hinder scalability and widespread deployment, and the development of direct current (DC) MEGs with high power output that can directly drive off-grid electronic devices is highly promising but challenging. Herein, a self-sustained moisture-electric generator (SMEG) with a hierarchical nanostructure based on one-dimensional (1D) negatively charged nanofibers and two-dimensional (2D) conductive nanosheets was demonstrated to generate continuous DC electricity from atmospheric humidity. Sulfation of bacterial cellulose nanofibers lowers the surface potential and increases the surface charge energy, and reduced graphene oxide (rGO) provides a conduction pathway for electrons. The hierarchical nanostructures constructed by the combination of 1D nanofibers and 2D nanosheets endow the SMEG with self-sustained moisture gradients and structural anisotropy, which force the generation of a pseudocurrent. This combination also constructs microcapacitors that further enhance the moisture-electric power output. The SMEG can generate a continuous voltage in excess of 0.54 V for over 2160 h, with a power density of about 822 μW cm-3, demonstrating excellent operational durability. This research provides a feasible solution for the development of sustainable, versatile, and efficient power supplies for off-grid self-powered devices.
Collapse
Affiliation(s)
- Luyu Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| |
Collapse
|
3
|
Wu P, Chen Y, Luo Y, Ji W, Wang Y, Qian Z, Duan Y, Li X, Fu S, Gao W, Liu D. Hierarchical Bilayer Polyelectrolyte Ion Paper Conductor for Moisture-Induced Power Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32198-32208. [PMID: 38865083 DOI: 10.1021/acsami.4c03665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Harvesting energy from air water (atmospheric moisture) promises a sustainable self-powered system without any restrictions from specific environmental requirements (e.g., solar cells, hydroelectric, or thermoelectric devices). However, the present moisture-induced power devices traditionally generate intermittent or bursts of energy, especially for much lower current outputs (generally keeping at nA or μA levels) from the ambient environment, typically suffering from inferior ionic conductivity and poor hierarchical structure design for manipulating sustained air water and ion-charge transport. Here, we demonstrate a universal strategy to design a high-performance bilayer polyelectrolyte ion paper conductor for generating continuous electric power from ambient humidity. The generator can produce a continuous voltage of up to 0.74 V and also an exceptional current of 5.63 mA across a single 1.0 mm-thick ion paper conductor. We discover that the sandwiched LiCl-nanocellulose-engineered paper promises an ion-transport junction between the negatively and positively charged bilayer polyelectrolytes for application in MEGs with both high voltage and high current outputs. Moreover, we demonstrated the universality of this bilayer sandwich nanocellulose-salt engineering strategy with other anions and cations, exhibiting similar power generation ability, indicating that it could be the next generation of sustainable MEGs with low cost, easier operation, and high performance.
Collapse
Affiliation(s)
- Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Xiaoming Li
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Shiyu Fu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Wenhua Gao
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Road, 381#, Tianhe District, Guangzhou, Guangdong 510640, China
| |
Collapse
|
4
|
Baek H, Choi J, Jeon S. Moisture-induced power generator fabricated on a lateral field-excited quartz resonator. Sci Rep 2024; 14:10817. [PMID: 38734827 PMCID: PMC11088684 DOI: 10.1038/s41598-024-61669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
We fabricated a moisture-induced power generator on a lateral field-excited quartz resonator to simultaneously measure changes in mass and voltage generation during water vapor adsorption. Circularly interdigitated gold electrodes were vacuum deposited on the top surface and used to measure changes in mass, and two symmetric semicircular gold electrodes were vacuum deposited on the bottom surface and used to measure changes in voltage generation. After coating a thin film of a mixture comprising sodium alginate, carbon black, and polyvinyl alcohol (SCP) on the top surface, an electric field was applied to create a concentration gradient of sodium ions between the interdigitated electrodes. The changes in the resonant frequency and voltage generation of the SCP-coated quartz resonator were measured simultaneously under various relative humidity conditions. The results revealed, for the first time, three distinct voltage-generation regions during moisture adsorption: (i) a region of negligible voltage generation, (ii) that of an increase in voltage generation, and (iii) that of a decrease in voltage generation.
Collapse
Affiliation(s)
- Hyerim Baek
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk, Republic of Korea
| | - Jihun Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk, Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
5
|
Han Y, Wang Y, Wang M, Dong H, Nie Y, Zhang S, He H. Nanofluid-Guided Janus Membrane for High-Efficiency Electricity Generation from Water Evaporation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312209. [PMID: 38262622 DOI: 10.1002/adma.202312209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/25/2023] [Indexed: 01/25/2024]
Abstract
Harvesting electricity from widespread water evaporation provides an alternative route to cleaner power generation technology. However, current evaporation power generation (EPG) mainly depends on the dissociation process of certain functional groups (e.g., SO3 H) in water, which suffers from low power density and short-term output. Herein, the Janus membrane is prepared by combining nanofluid and water-grabbing material for EPG, where the nanoconfined ionic liquids (NCILs) serve as ion sources instead of the functional groups. Benefiting from the selective and fast transport of anions in NCILs, such EPG demonstrates excellent power performance with a voltage of 0.63 V, a short-circuit current of 140 µA, and a maximum power density of 16.55 µW cm-2 while operating for at least 180 h consistently. Molecular dynamics (MD) simulation and surface potential analysis reveal the molecular mechanism, that is, the diffusion of Cl- anions during evaporation is much faster than that of cations, generating the voltage and current across the membrane. Furthermore, the device performs well in varying environmental conditions, including different water temperatures and sources of evaporating water, showcasing its adaptability and integrability. Overall, the nanofluid-guided Janus membrane can efficiently transform low-grade thermal energy in evaporation into electricity, showing a competitive advantage over other sustainable applied approaches.
Collapse
Affiliation(s)
- Yongxiang Han
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| | - Mi Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou, 450000, P. R. China
| |
Collapse
|