1
|
Wang D, Ling S, Hou P. Enhanced Performance of a Self-Powered Au/WSe 2/Ta 2NiS 5/Au Heterojunction by the Interfacial Pyro-phototronic Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48576-48584. [PMID: 39207265 DOI: 10.1021/acsami.4c10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The growing need for wearable electronics and self-powered electronic devices has driven the successful development of self-powered two-dimensional (2D) photodetectors using the photovoltaic effect of Schottky and p-n junctions. However, there is an urgent need to develop multifunctional photodetectors capable of harvesting energy from different sources to overcome their limitations in efficiency and cost. While the pyro-phototronic effect has been shown to effectively influence optoelectronic processes in heterojunctions, the number of reported two-dimensional heterojunctions exhibiting interfacial pyroelectricity is still limited, and the responsivity and detectivity based on such heterojunctions tend to be low. In this study, a photodetector based on an Au/WSe2/Ta2NiS5/Au heterojunction was designed and fabricated. By harnessing the interfacial pyro-phototronic effect arising from the built-in electric fields at the Au/WSe2 Schottky junction and WSe2/Ta2NiS5 heterojunction, the photodetector exhibits a broadband response range of 405-1064 nm, with approximately 12 times enhancement in output current compared to solely relying on the photovoltaic effect. Under 660 nm light irradiation, the self-powered photodetector exhibits a responsivity of 121 mA/W, an external quantum efficiency of 22.64%, and a specific detectivity of 2 × 1012 Jones. Notably, its pyroelectric coefficient exceeds 8 × 103 μC·m-2·K-1. These findings pave the way for effectively detecting weak light and temperature variation while presenting a new strategy for developing high-performance photodetectors utilizing the interfacial pyro-phototronic effect.
Collapse
Affiliation(s)
- Danzhi Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Shiyu Ling
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Pengfei Hou
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| |
Collapse
|
2
|
Wan J, Zhang J, Liu F, Sa Z, Li P, Wang M, Wang G, Zang Z, Chen F, Yip S, Yang ZX. Toward High-Performance Self-Powered Near-Ultraviolet Photodetection by Constructing a Unipolar Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049155 DOI: 10.1021/acsami.4c07333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Constructing a unipolar heterojunction is an effective energy band engineering strategy to improve the performance of photoelectric devices, which could suppress dark current and enhance detectivity by modulating the transfer of carriers. In this work, unipolar heterojunctions of Si/PbI2 and GaSb/PbI2 are constructed successfully for high-performance self-powered near-ultraviolet photodetection. Owing to the unique band offset of unipolar heterojunctions, the transport of holes is blocked, and only photogenerated electrons in PbI2 can flow unimpeded under the driving force of the built-in electric field. Thus, the recombination of photogenerated electron-hole pairs is suppressed, contributing to high-performance near-ultraviolet photodetection. The as-fabricated Si/PbI2 self-powered near-ultraviolet photodetector exhibits a low dark current of 10-13 A, a high Ilight/Idark ratio of 104, and fast response times of 26/24 ms, which are much better than those of the PbI2 metal-semiconductor-metal photodetector. Furthermore, the as-fabricated GaSb/PbI2 unipolar heterojunction photodetector also exhibits impressive self-powered near-ultraviolet photodetection behaviors. Evidently, this work shows the potential of unipolar heterojunctions for next-generation Si-based and GaSb-based high-performance photodetection.
Collapse
Affiliation(s)
- Junchen Wan
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Jie Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fengjing Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zixu Sa
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Pengsheng Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Mingxu Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Guangcan Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zeqi Zang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 8168580, Japan
| | - Zai-Xing Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
3
|
Wang X, Tong L, Fan W, Yan W, Su C, Wang D, Wang Q, Yan H, Yin S. Air-stable self-powered photodetector based on TaSe 2/WS 2/TaSe 2 asymmetric heterojunction with surface self-passivation. J Colloid Interface Sci 2024; 657:529-537. [PMID: 38070338 DOI: 10.1016/j.jcis.2023.11.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/02/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides are highly suitable for constructing junction photodetectors because of their suspended bond-free surface and adjustable bandgap. Additional stable layers are often used to ensure the stability of photodetectors. Unfortunately, they often increase the complexity of preparation and cause performance degradation of devices. Considering the self-passivation behavior of TaSe2, we designed and fabricated a novel self-powered TaSe2/WS2/TaSe2 asymmetric heterojunction photodetector. The heterojunction photodetector shows excellent photoelectric performance and photovoltaic characteristics, achieving a high responsivity of 292 mA/W, an excellent specific detectivity of 2.43 × 1011 Jones, a considerable external quantum efficiency of 57 %, a large optical switching ratio of 2.6 × 105, a fast rise/decay time of 43/54 μs, a high open-circuit voltage of 0.23 V, and a short-circuit current of 2.28 nA under 633 nm laser irradiation at zero bias. Moreover, the device also shows a favorable optical response to 488 and 532 nm lasers. Notably, it exhibits excellent environmental long-term stability with the performance only decreasing ∼ 5.6 % after exposed to air for 3 months. This study provides a strategy for the development of air-stable self-powered photodetectors based on 2D materials.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lei Tong
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenhao Fan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wei Yan
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Can Su
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Deji Wang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Qingguo Wang
- GuoAng Zhuotai (Tianjin) Smart IOT Technology Co., Ltd, Tianjin 301700, China
| | - Hui Yan
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
4
|
Chen J, Kuang H, Wang Y, Liu X, Peng L, Lin J. Design and optimization of a multidirectional photodetector in optoelectronic integration. OPTICS LETTERS 2024; 49:997-1000. [PMID: 38359245 DOI: 10.1364/ol.514161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
We have introduced and demonstrated a three-dimensional, multidirectional photodetector (PD) made of germanium for optoelectronic integration (OEI) systems. Building upon the fundamental physical principles of PDs, we focused on the design aspects of structure, dimensions, and doping. This led to the development of an integrated chip-level PD capable of discerning light from four different directions. Simulation verification confirmed that the key performance parameters of the four equivalent PDs meet the specified requirements. Importantly, we have identified the device's ability and strategy to evaluate light signals from different directions, as well as the impact of fluctuations in light intensity on the accuracy of the judgments. In-depth investigations into the effects of external bias, doping concentration, and doping region have been conducted to further optimize parameters, enhancing the performance of the proposed device. Overall, the current work will help improve the efficiency of PD and enhance the integration of future OEI chips.
Collapse
|
5
|
Wang G, Liu F, Chen R, Wang M, Yin Y, Zhang J, Sa Z, Li P, Wan J, Sun L, Lv Z, Tan Y, Chen F, Yang ZX. Tunable Contacts of Bi 2 O 2 Se Nanosheets MSM Photodetectors by Metal-Assisted Transfer Approach for Self-Powered Near-Infrared Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306363. [PMID: 37817352 DOI: 10.1002/smll.202306363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Indexed: 10/12/2023]
Abstract
Owing to the Fermi pinning effect arose in the metal electrodes deposition process, metal-semiconductor contact is always independent on the work function, which challenges the next-generation optoelectronic devices. In this work, a metal-assisted transfer approach is developed to transfer Bi2 O2 Se nanosheets onto the pre-deposited metal electrodes, benefiting to the tunable metal-semiconductor contact. The success in Bi2 O2 Se nanosheets transfer is contributed to the stronger van der Waals adhesion of metal electrodes than that of growth substrates. With the pre-deposited asymmetric electrodes, the self-powered near-infrared photodetectors are realized, demonstrating low dark current of 0.04 pA, high Ilight /Idark ratio of 380, fast rise and decay times of 4 and 6 ms, respectively, under the illumination of 1310 nm laser. By pre-depositing the metal electrodes on polyimide and glass, high-performance flexible and omnidirectional self-powered near-infrared photodetectors are achieved successfully. This study opens up new opportunities for low-dimensional semiconductors in next-generation high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Guangcan Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Fengjing Liu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ruichang Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Mingxu Wang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yanxue Yin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jie Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zixu Sa
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Pengsheng Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Junchen Wan
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Li Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zengtao Lv
- School of Physical Science and Information Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Yang Tan
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zai-Xing Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
6
|
Zhang J, Wang M, Li P, Sa Z, Liu F, Sun W, Li Y, Mu W, Jia Z, Chen M, Yang ZX. Toward Smart, Flexible, and Omnidirectional Self-Powered Photodetection by an All-Solution-Processed In 2O 3/Pbl 2 Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3685-3693. [PMID: 38226599 DOI: 10.1021/acsami.3c16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Amorphous In2O3 film is emerging as a promising oxide semiconductor for next-generation electronics and optoelectronics owing to high mobility and wide band gap. However, the persistent photocurrent phenomenon and high carrier concentration in amorphous In2O3 film are challenging the photodetection performances, resulting in a long response time and low Ilight/Idark ratio. In this work, the In2O3/PbI2 heterojunction is constructed by an all-solution synthesis process to inhibit the persistent photocurrent phenomenon and large dark current. Benefiting from the built-in electric field at the heterojunction interface, the In2O3/PbI2 heterojunction photodetector exhibits excellent self-powered photodetection performances with an ultralow dark current of 10-12 A, a high Ilight/Idark ratio of 104, and fast response times of 0.6/0.6 ms. Furthermore, the entire solution synthesis process and amorphous characteristics enable the fabrication of an In2O3/PbI2 heterojunction photodetector on arbitrary substrates to realize specific functions. When configured onto the polyimide substrate, the In2O3/PbI2 heterojunction photodetector shows excellent mechanical flexibility, bending endurance, and photoresponse stability. When implanted onto the transparent substrate, the In2O3/PbI2 heterojunction photodetector exhibits an outstanding omnidirectional self-powdered photodetection performance and imaging capability. All results pave the way for an all-solution-processed amorphous In2O3 film in advanced high-performance photodetectors.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Mingxu Wang
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Pengsheng Li
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Zixu Sa
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Fengjing Liu
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Wenzhang Sun
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Yang Li
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Wenxiang Mu
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Zhitai Jia
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
- Shandong Research Institute of Industrial Technology, Jinan 250101, China
| | - Ming Chen
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| | - Zai-Xing Yang
- State Key Laboratory of Crystal Materials, Institute of Novel Semiconductors, School of Physics, Shandong University, Jinan250100, China
| |
Collapse
|
7
|
Lu Z, Chen L, Zhou J, He B, Liu R, Zhu C, Xue P, Sun Y, Li C, Wei L, Li Q, Zhang Q. Integrating High-Sensitivity Photodetector and High-Energy Aqueous Battery in All-in-One Triple-Twisted Fiber. ACS NANO 2023; 17:20087-20097. [PMID: 37787647 DOI: 10.1021/acsnano.3c05710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Fiber-shaped photodetectors (FPDs) have attracted special attention to wearable health monitoring due to their 3D absorption capabilities. However, the practical application of traditional FPDs is severely limited by the irreversible degradation of performance caused by vulnerable interface compatibility on complex deformation and a single function. Here, an integrated photoelectrochemical FPD/battery device (FPDB) is designed, consisting of a common electrode, photoanode, anode, and sol-gel electrolyte as an isolation layer, which not only effectively avoids the short circuit problem of FPD but also endows high-efficiency energy storage capacity. As expected, the resulting all-in-one triple-twisted fiber-shaped FPDB simultaneously achieves high responsiveness of 151.45 mA W-1 and excellent volume capacity of 18.75 mAh cm-3. Such a stable architectural design and multifunctional integration of functional fibers accelerate the development of next-generation wearable fabrics.
Collapse
Affiliation(s)
- Zecheng Lu
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Long Chen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianxian Zhou
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ruijian Liu
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Chengjun Zhu
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
8
|
Saleem MI, Chandrasekar P, Batool A, Lee JH. Aqueous-Phase Formation of Two-Dimensional PbI 2 Nanoplates for High-Performance Self-Powered Photodetectors. MICROMACHINES 2023; 14:1949. [PMID: 37893386 PMCID: PMC10608996 DOI: 10.3390/mi14101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The process of the aqueous synthesis of nanomaterials has gained considerable interest due to its ability to eliminate the need for complex organic solvents, which aligns with the principles of green chemistry. Fabricating nanostructures in aqueous solutions has gained recognition for its potential to develop ultrasensitive, low-energy, and ultrafast optoelectronic devices. This study focuses on synthesizing lead iodide (PbI2) nanoplates (NPs) using a water-based solution technique and fabricating a planar photodetector. The planar photodetectors (ITO/PbI2 NPs/Au) demonstrated a remarkable photosensitivity of 3.9 × 103 and photoresponsivity of 0.51 mA/W at a wavelength of 405 nm. Further, we have carried-out analytical calculations for key performance parameters including open-circuit voltage (Voc), short-circuit current (Isc), on-off ratio, responsivity (R), and specific detectivity (D*) at zero applied bias, while photodetector operating in self-powered mode. These values are as follows: Voc = 0.103 V, Isc = 1.93 × 10-8, on-off ratio = 103, R = 4.0 mA/W, and D* = 3.3 × 1011 Jones. Particularly, the asymmetrical output properties of ITO/PbI2 NPs/Au detector provided additional evidence of the effective creation of a Schottky contact. Therefore, the photodetector exhibited a photo-response even at 0 V bias (rise/decay time ~1 s), leading to the realization of self-powered photodetectors. Additionally, the device exhibited a rapid photo-response of 0.23/0.38 s (-5 V) in the visible range. This study expands the scope of aqueous-phase synthesis of PbI2 nanostructures, enabling the large-area fabrication of high-performance photodetectors.
Collapse
Affiliation(s)
- Muhammad Imran Saleem
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
| | | | - Attia Batool
- Research Center for Materials Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea;
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
9
|
Mei L, Zhang K, Cui N, Yu W, Li Y, Gong K, Li H, Fu N, Yuan J, Mu H, Huang Z, Xu Z, Lin S, Zhu L. Ultraviolet-Visible-Short-Wavelength Infrared Broadband and Fast-Response Photodetectors Enabled by Individual Monocrystalline Perovskite Nanoplate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301386. [PMID: 37086119 DOI: 10.1002/smll.202301386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Perovskite-based photodetectors exhibit potential applications in communication, neuromorphic chips, and biomedical imaging due to their outstanding photoelectric properties and facile manufacturability. However, few of perovskite-based photodetectors focus on ultraviolet-visible-short-wavelength infrared (UV-Vis-SWIR) broadband photodetection because of the relatively large bandgap. Moreover, such broadband photodetectors with individual nanocrystal channel featuring monolithic integration with functional electronic/optical components have hardly been explored. Herein, an individual monocrystalline MAPbBr3 nanoplate-based photodetector is demonstrated that simultaneously achieves efficient UV-Vis-SWIR detection and fast-response. Nanoplate photodetectors (NPDs) are prepared by assembling single nanoplate on adjacent gold electrodes. NPDs exhibit high external quantum efficiency (EQE) and detectivity of 1200% and 5.37 × 1012 Jones, as well as fast response with rise time of 80 µs. Notably, NPDs simultaneously achieve high EQE and fast response, exceeding most perovskite devices with multi-nanocrystal channel. Benefiting from the high specific surface area of nanoplate with surface-trap-assisted absorption, NPDs achieve high performance in the near-infrared and SWIR spectral region of 850-1450 nm. Unencapsulated devices show outstanding UV-laser-irradiation endurance and decent periodicity and repeatability after 29-day-storage in atmospheric environment. Finally, imaging applications are demonstrated. This work verifies the potential of perovskite-based broadband photodetection, and stimulates the monolithic integration of various perovskite-based devices.
Collapse
Affiliation(s)
- Luyao Mei
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Kai Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Nan Cui
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Wenzhi Yu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Yang Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Kaiwen Gong
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Haozhe Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Nianqing Fu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Jian Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Haoran Mu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Zhanfeng Huang
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Zhengji Xu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Lu Zhu
- Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, Guangdong, 519082, P. R. China
| |
Collapse
|