1
|
Zhang M, Zhang X, Liu S, Hou W, Lu Y, Hou L, Luo Y, Liu Y, Yuan C. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective. CHEMSUSCHEM 2024; 17:e202400538. [PMID: 38763902 DOI: 10.1002/cssc.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/21/2024]
Abstract
Lithium-sulfur batteries (LSBs) have recently gained extensive attention due to their high energy density, low cost, and environmental friendliness. However, serious shuttle effect and uncontrolled growth of lithium dendrites restrict them from further commercial applications. As "the third electrode", functional separators are of equal significance as both anodes and cathodes in LSBs. The challenges mentioned above are effectively addressed with rational design and optimization in separators, thereby enhancing their reversible capacities and cycle stability. The review discusses the status/operation mechanism of functional separators, then primarily focuses on recent research progress in versatile separators with purposeful modifications for LSBs, and summarizes the methods and characteristics of separator modification, including heterojunction engineering, single atoms, quantum dots, and defect engineering. From the perspective of the anodes, distinct methods to inhibit the growth of lithium dendrites by modifying the separator are discussed. Modifying the separators with flame retardant materials or choosing a solid electrolyte is expected to improve the safety of LSBs. Besides, in-situ techniques and theoretical simulation calculations are proposed to advance LSBs. Finally, future challenges and prospects of separator modifications for next-generation LSBs are highlighted. We believe that the review will be enormously essential to the practical development of advanced LSBs.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xu Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Sen Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenshuo Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yang Lu
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
2
|
Feng Y, Zhu X, Bian T, Liu Z, Zhao L, Wang J, He J, Zhao Y. Electrolyte Superwetting and Electrode Friendly of Porous Membrane for Better Cycling Stability of Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401940. [PMID: 38845488 DOI: 10.1002/smll.202401940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/10/2024] [Indexed: 10/04/2024]
Abstract
Porous polymer membranes as separator plays important roles in separating cathode and anode, storing electrolytes, and transporting ions in energy storage devices. Here, an effective strategy is reported to prepare an electrolyte superwetting membrane, which shows good Li+ transport rate and uniformity, as well as electrode-friendly properties to afford the reduction and oxidation of electrodes. It thereby improves the cycle stability and safety of Li metal batteries. With the arrayed capillaries technique, a thin layer of polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN) composite is uniformly coated on the surface and pores of polypropylene (PP) membrane with a total thickness of 30 µm. After treating it with n-butyllithium and LiNO3 in turn, a chemically inert membrane with efficient and uniform ion transport is prepared, and the cycle stability of Li||Li symmetric cells is up to 1500 h, 4 times higher than that of PP membrane. Moreover, the Li||LiFePO4 with as-prepared membranes achieve a higher capacity retention rate of 92% after 190 cycles at a current density of 3.6 mA cm-2 and a capacity of 3.6 mAh cm-2, and the Li||NCM721 batteries achieve a capacity retention rate of 71% after 600 cycles at a current density of 1.8 mA cm-2.
Collapse
Affiliation(s)
- Yunchong Feng
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Tengfei Bian
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zewen Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Long Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jinhao Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Jinling He
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
3
|
Hussain A, Mohamed MM, Omer Aijaz M, Rezaul Karim M, Saeed Alzahrani A, Abdul Aziz M. Advanced PEI/PAN Membrane to Suppress Zinc Dendrite Growth in Zinc Metal Batteries. Chem Asian J 2024:e202400828. [PMID: 39231000 DOI: 10.1002/asia.202400828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are a potential new technology in energy storage due to their high energy density, affordability, and environmental friendliness. The development of AZIBs is still hampered by unchecked zinc dendrite formation during cycling, which results in an unstable interface, a short cycling life, and a considerable capacity decline with security issues. Herein, we demonstrate a novel nanofiber membrane based on polyetherimide-polyacrylonitrile (PEI/PAN) polymer via electrospinning method with entangled nanofibers for AZIBs applications. The as-fabricated PEI/PAN membrane has a homogeneous, tortuous, and linked porous structure, high porosity, and superior electrolyte wettability. The resulting PEI/PAN membrane exhibits a decent thermal stability of 200 °C and a strong ionic conductivity of up to 5.3×10-4 S cm-1. This membrane gives Zn/Zn symmetric cells an ultralong cycle life of more than 250 hours at 3 mA cm-2. In the meantime, the MnO2/Zn cell outperforms commercial filter paper regarding cycle stability and rate performance. This work demonstrates the design of a straightforward technique to fabricate advanced nanofiber membranes for AZIBs to modify Zn2+ deposition behavior and improve Zn dendrite resistance.
Collapse
Affiliation(s)
- Arshad Hussain
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mostafa M Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Muhammad Omer Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh, 11421, Saudi Arabia
| | - Atif Saeed Alzahrani
- Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Hussain A, Mehmood A, Raza W, Faheem M, Saleem A, Kashif Majeed M, Iqbal R, Aziz MA. Highly Stretchable Polyurethane Porous Membranes with Adjustable Morphology for Advanced Lithium Metal Batteries. Chem Asian J 2024; 19:e202400245. [PMID: 38634677 DOI: 10.1002/asia.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
A highly flexible, tunable morphology membrane with excellent thermal stability and ionic conductivity can endow lithium metal batteries with high power density and reduced dendrite growth. Herein, a porous Polyurethane (PU) membrane with an adjustable morphology was prepared by a simple nonsolvent-induced phase separation technique. The precise control of the final morphology of PU membranes can be achieved through appropriate selection of a nonsolvent, resulting a range of pore structures that vary from finger-like voids to sponge-like pores. The implementation of combinatorial DFT and experimental analysis has revealed that spongy PU porous membranes, especially PU-EtOH, show superior electrolyte wettability (472%), high porosity (75%), good mechanical flexibility, robust thermal dimensional stability (above 170 °C), and elevated ionic conductivity (1.38 mS cm-1) in comparison to the polypropylene (PP) separator. The use of PU-EtOH in Li//Li symmetric cell results in a prolonged lifespan of 800 h, surpasing the longevity of PU or PP cells. Moreover, when subjected to a high rate of 5 C, the LiFePO4/Li half-cell with a PU-EtOH porous membrane displayed better cycling performance (115.4 mAh g-1) compared to the PP separator (104.4 mAh g-1). Finally, the prepared PU porous membrane exhibits significant potential for improving the efficiency and safety of LMBs.
Collapse
Affiliation(s)
- Arshad Hussain
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Andleeb Mehmood
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Guangdong, 518060, China
| | - Muhammad Faheem
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box, 5040, Dhahran, 31261, Saudi Arabia
| | - Adil Saleem
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Muhammad Kashif Majeed
- Department of Chemistry, School of Natural Sciences, National University of science and technology, 44000, Islamabad, Pakistan
| | - Rashid Iqbal
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box, 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Wu XW, Karuppiah C, Wu YS, Zhang BR, Hsu LF, Shih JY, James Li YJ, Hung TF, Kannan Ramaraj S, Jose R, Yang CC. Unveiling high-power and high-safety lithium-ion battery separator based on interlayer of ZIF-67/cellulose nanofiber with electrospun poly(vinyl alcohol)/melamine nonwoven membranes. J Colloid Interface Sci 2024; 658:699-713. [PMID: 38141392 DOI: 10.1016/j.jcis.2023.12.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).
Collapse
Affiliation(s)
- Xiao-Wei Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC.
| | - Yi-Shiuan Wu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Bo-Rong Zhang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Li-Fan Hsu
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Jeng-Ywan Shih
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Ying-Jeng James Li
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC
| | - Tai-Feng Hung
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Rajan Jose
- Center for Advanced Intelligent Materials & Faculty of Industrial Sciences and Technology, University Malaysia Pahang Al-Sultan Abdullah, 26300 Kuantan, Pahang, Malaysia
| | - Chun-Chen Yang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC; Department of Chemical and Materials Engineering, Chang Gung University, Kwei-shan, Taoyuan 333, Taiwan, ROC.
| |
Collapse
|