1
|
Takaloo S, Xu AH, Zaidan L, Irannejad M, Yavuz M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. BIOSENSORS 2024; 14:593. [PMID: 39727858 DOI: 10.3390/bios14120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule.
Collapse
Affiliation(s)
- Saeed Takaloo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - Alexander H Xu
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Liena Zaidan
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
2
|
Wang X, Liu W, Ma H, Li H, Wang J, Wang D. Glutathione-mediated copper sulfide nanoplatforms with morphological and vacancy-dependent photothermal catalytic activity for multi-model tannic acid assays. J Colloid Interface Sci 2024; 670:460-472. [PMID: 38772262 DOI: 10.1016/j.jcis.2024.05.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Interface engineering and vacancy engineering play an important role in the surface and electronic structure of nanomaterials. The combination of the two provides a feasible way for the development of efficient photocatalytic materials. Here, we use glutathione (GSH) as a coordination molecule to design a series of CuxS nanomaterials (CuxS-GSH) rich in sulfur vacancies using a simple ultrasonic-assisted method. Interface engineering can induce amorphous structure in the crystal while controlling the formation of porous surfaces of nanomaterials, and the formation of a large number of random orientation bonds further increases the concentration of sulfur vacancies in the crystal structure. This study shows that interface engineering and vacancy engineering can enhance the light absorption ability of CuxS-GSH nanomaterials from the visible to the near-infrared region, improve the efficiency of charge transfer between CuxS groups, and promote the separation and transfer of optoelectronic electron-hole pairs. In addition, a higher specific surface area can produce a large number of active sites, and the synergistic and efficient photothermal conversion efficiency (58.01%) can jointly promote the better photocatalytic performance of CuxS-GSH nanomaterials. Based on the excellent hot carrier generation and photothermal conversion performance of CuxS-GSH under illumination, it exhibits an excellent ability to mediate the production of reactive oxygen species (ROS) through peroxide cleavage and has excellent peroxidase activity. Therefore, CuxS-GSH has been successfully developed as a nanoenzyme platform for detecting tannic acid (TA) content in tea, and convenient and rapid detection of tannic acid is achieved through the construction of a multi-model strategy. This work not only provides a new way to enhance the enzyme-like activity of nanomaterials but also provides a new prospect for the application of interface engineering and vacancy engineering in the field of photochemistry.
Collapse
Affiliation(s)
- Xinhao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wenliang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hongyang Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiqian Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
3
|
Zaccagnini F, De Biase D, Bovieri F, Perotto G, Quagliarini E, Bavasso I, Mangino G, Iuliano M, Calogero A, Romeo G, Singh DP, Pierini F, Caracciolo G, Petronella F, De Sio L. Multifunctional FFP2 Face Mask for White Light Disinfection and Pathogens Detection using Hybrid Nanostructures and Optical Metasurfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400531. [PMID: 38742980 DOI: 10.1002/smll.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.
Collapse
Affiliation(s)
- Federica Zaccagnini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Francesca Bovieri
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Giovanni Perotto
- Istituto Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, Genova, 16163, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Irene Bavasso
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome & UdR INSTM, Via Eudossiana 18, Roma, 00184, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Dharmendra Pratap Singh
- Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais cedex, 62228, France
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Rome Division, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, Montelibretti (RM), 00010, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| |
Collapse
|
4
|
Yu S, Xia G, Yang N, Yuan L, Li J, Wang Q, Li D, Ding L, Fan Z, Li J. Noble Metal Nanoparticle-Based Photothermal Therapy: Development and Application in Effective Cancer Therapy. Int J Mol Sci 2024; 25:5632. [PMID: 38891819 PMCID: PMC11172079 DOI: 10.3390/ijms25115632] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.
Collapse
Affiliation(s)
- Shujie Yu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Guoyu Xia
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Nan Yang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Longlong Yuan
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jianmin Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Qingluo Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Dingyang Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Lijun Ding
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jinyao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| |
Collapse
|
5
|
Lai W, Yan S, Jiang M, Li Z, Wang M, Zhao C, Ma C, Wei Z, Hong C. Two Birds with one Stone: Dual-mode immunoassay constructed using a novel emitter ethylene glycol-induced perylene diimide and a multifunctional ANS probe. Biosens Bioelectron 2024; 252:116151. [PMID: 38402725 DOI: 10.1016/j.bios.2024.116151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Perylene diimide (PDI) is a readily reducible electron-deficient dye that exhibits strong photoluminescent properties, providing new opportunities for synthesizing novel electrochemiluminescence (ECL) emitters. In this study, ethylene glycol (EG) was used to induce the self-assembly of PDI supramolecules for the preparation of ultrathin EG-PDI nanosheets characterized by low crystallinity and weak stacking interaction. Notably, EG-PDI integrates luminescent and catalytic functions into one device, accelerating the interfacial electron transfer and the faster charge transfer kinetics of EG-PDI with K2S2O8. Furthermore, the narrow band gap of EG-PDI facilitates its excitation at an ultra-low potential (-0.3 V). To improve the efficiency of tumor marker analysis, multifunctional Au nanostars (ANS) was introduced both as an energy acceptor of the ECL system and a probe for the photothermal system. Dual-mode immunoassay have demonstrated superior analytical performance in detecting alpha-fetoprotein (AFP), meeting the requirements of modern clinical diagnostics in resource-limited environments.
Collapse
Affiliation(s)
- Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Shijie Yan
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Zhina Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chulei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chaoyun Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830000, PR China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| |
Collapse
|
6
|
Dong Z, Xue K, Verma A, Shi J, Wei Z, Xia X, Wang K, Zhang X. Photothermal therapy: a novel potential treatment for prostate cancer. Biomater Sci 2024; 12:2480-2503. [PMID: 38592730 DOI: 10.1039/d4bm00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Prostate cancer (PCa) is a leading cause of cancer-related death in men, and most PCa patients treated with androgen deprivation therapy will progress to metastatic castration-resistant prostate cancer (mCRPC) due to the lack of efficient treatment. Recently, lots of research indicated that photothermal therapy (PTT) was a promising alternative that provided an accurate and efficient prostate cancer therapy. A photothermic agent (PTA) is a basic component of PPT and is divided into organic and inorganic PTAs. Besides, the combination of PTT and other therapies, such as photodynamic therapy (PDT), immunotherapy (IT), chemotherapy (CT), etc., provides an more efficient strategy for PCa therapy. Here, we introduce basic information about PTT and summarize the PTT treatment strategies for prostate cancer. Based on recent works, we think the combination of PPT and other therapies provides a novel possibility for PCa, especially CRPC clinical treatment.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anushikha Verma
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhihao Wei
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan 430022, Hubei, China.
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Wang X, Sun X, Liu W, Li H, Wang J, Wang D. Amino acid-mediated amorphous copper sulphide with enhanced photothermal conversion efficiency for antibacterial application. J Colloid Interface Sci 2024; 657:142-154. [PMID: 38035417 DOI: 10.1016/j.jcis.2023.11.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Pathogenic bacteria in daily life, such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), often seriously affect human life and health. The extensive use of antibiotics has led to the emergence of drug-resistant bacteria, so it is urgent to develop efficient and non-drug-resistant sterilization methods. Here, we use small-molecule cysteine (Cys) as an auxiliary agent to synthesize spherical porous amorphous CuS-Cysteine (CuS-C) nanoparticles, which have good dispersion in aqueous solutions, and explore the reaction mechanism of Cys-induced CuS synthesis. The synthesized composite nanomaterials have strong near-infrared light absorption ability and efficient photothermal conversion ability and can effectively ablate pathogenic bacteria under the irradiation of an 808 nm laser. In addition, antibacterial experiments showed that CuS-C composites had no bactericidal effect without near-infrared light, but they had a good photothermal bactericidal effect on S. aureus and E. coli under radiation conditions. Considering the simple synthesis process, strong photothermal conversion ability, low cost, and suitability for large-scale production, CuS-C nanocomposites, as a promising antibacterial material, will provide a feasible scheme for the treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Xinhao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiaoyan Sun
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, Shandong, China
| | - Wenliang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiqian Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
8
|
Liu W, Han H, Wang J. Recent Advances in the 3D Chiral Plasmonic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305725. [PMID: 37828637 DOI: 10.1002/smll.202305725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Indexed: 10/14/2023]
Abstract
From the view of geometry, chirality is that an object cannot overlap with its mirror image, which has been a fundamental scientific problem in biology and chemistry since the 19th century. Chiral inorganic nanomaterials serve as ideal templates for investigating chiral transfer and amplification mechanisms between molecule and bulk materials, garnering widespread attentions. The chiroptical property of chiral plasmonic nanomaterials is enhanced through localized surface plasmon resonance effects, which exhibits distinctive circular dichroism (CD) response across a wide wavelength range. Recently, 3D chiral plasmonic nanomaterials are becoming a focal research point due to their unique characteristics and planar-independence. This review provides an overview of recent progresses in 3D chiral plasmonic nanomaterials studies. It begins by discussing the mechanisms of plasmonic enhancement of molecular CD response, following by a detailed presentation of novel classifications of 3D chiral plasmonic nanomaterials. Finally, the applications of 3D chiral nanomaterials such as biology, sensing, chiral catalysis, photology, and other fields have been discussed and prospected. It is hoped that this review will contribute to the flourishing development of 3D chiral nanomaterials.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Han
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
9
|
Pan J, Du J, Hu Q, Liu Y, Zhang X, Li X, Zhou D, Yao Q, Long S, Fan J, Peng X. Photo-Induced Electron Transfer-Triggered Structure Deformation Promoting Near-Infrared Photothermal Conversion for Tumor Therapy. Adv Healthc Mater 2023; 12:e2301091. [PMID: 37321560 DOI: 10.1002/adhm.202301091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) is a promising approach to cancer treatment. Heptamethine cyanine (Cy7) is an attractive photothermal reagent because of its large molar absorption coefficient, good biocompatibility, and absorption of near-infrared irradiation. However, the photothermal conversion efficiency (PCE) of Cy7 is limited without ingenious excitation-state regulation. In this study, the photothermal conversion ability of Cy7 is efficiently enhanced based on photo-induced electron transfer (PET)-triggered structural deformation. Three Cy7 derivatives, whose Cl is replaced by carbazole, phenoxazine, and phenothiazine at the meso-position (CZ-Cy7, PXZ-Cy7, and PTZ-Cy7), are presented as examples to demonstrate the regulation of the energy release of the excited states. Because the phenothiazine moiety exhibits an obvious PET-induced structural deformation in the excited state, which quenches the fluorescence and inhibits intersystem crossing of S1 →T1 , PTZ-Cy7 exhibits a PCE as high as 77.5%. As a control, only PET occurs in PXZ-Cy7, with a PCE of 43.5%. Furthermore, the PCE of CZ-Cy7 is only 13.0% because there is no PET process. Interestingly, PTZ-Cy7 self-assembles into homogeneous nanoparticles exhibiting passive tumor-targeting properties. This study provides a new strategy for excited-state regulation for photoacoustic imaging-guided PTT with high efficiency.
Collapse
Affiliation(s)
- Jingwei Pan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Yuan Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Xiaoxue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Xin Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Danhong Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| |
Collapse
|
10
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 358] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
11
|
Zhong S, Hang L, Wen L, Zhang T, Cao A, Zeng P, Zhang H, Liu D, Cai W, Li Y. Rapid controllable synthesis of branched Au superparticles: formation mechanism of toggling the growth mode and their applications in optical broadband absorption. NANOSCALE ADVANCES 2023; 5:1776-1783. [PMID: 36926572 PMCID: PMC10012854 DOI: 10.1039/d3na00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
We develop a tunable, ultrafast (5 seconds), and mass-producible seed-mediated synthesis method to prepare branched Au superparticles consisting of multiple small Au island-like nanoparticles by a wet chemical route. We reveal and confirm the toggling formation mechanism of Au superparticles between the Frank-van der Merwe (FM) growth mode and the Volmer-Weber (VW) growth mode. The key factor of this special structure is the frequent toggling between the FM (layer by layer) growth mode and the VW (island) growth mode induced by 3-aminophenol, which is continuously absorbed on the surface of newborn Au nanoparticles, leading to a relatively high surface energy during the overall synthesis process, thus achieving an island on island growth. Such Au superparticles demonstrate broadband absorption from visible to near-infrared regions due to their multiple plasmonic coupling and hence they have important applications in sensors, photothermal conversion and therapy, etc. We also exhibit the excellent properties of Au superparticles with different morphologies, such as NIR-II photothermal conversion and therapy and SERS detection. The photothermal conversion efficiency under 1064 nm laser irradiation was calculated to be as high as 62.6% and they exhibit robust photothermal therapy efficiency. This work provides insight into the growth mechanism of plasmonic superparticles and develops a broadband absorption material for highly efficient optical applications.
Collapse
Affiliation(s)
- Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital Guangzhou 518037 P. R. China
| | - Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Tao Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Hanlin Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| |
Collapse
|