1
|
Shen L, Kong T, Yu J, Nan F, Wu Z, Li B, Li J, Yu WW. Self-polymerized metal-phenolic ionogel with multifunctional properties towards theranostic wearable electronics. Acta Biomater 2025:S1742-7061(25)00305-8. [PMID: 40311991 DOI: 10.1016/j.actbio.2025.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
With the rapid development of wearable technology toward integrated diagnostics and therapy, wearable electronic materials are required to possess a range of properties, such as stretchable, compressible, conductive, anti-freezing, biocompatible, and antimicrobial properties. Metal-phenolic dual-network ionogel (MP-DN ionogel) was thus prepared by using FeIII-tannic acid and H2O2 as dual self-catalysis system to trigger the polymerization of hydrophilic ionic liquid monomer and hydrophobic acrylamide glycidyl ester monomer. The prepared ionogel showed well-rounded properties including high conductivity, good self-healing, anti-freezing (remains ice-free at -20 °C), anti-swelling, effective antibacterial property (anti-bacterial ratio > 99.9 %), and good cell and tissue biocompatibility. The ionogel exhibited the capability of recording electrocardiogram (ECG), electromyography (EMG), monitoring motion of finger bending and promoting wound healing. The present work provides a simple one-pot strategy to prepare multifunctional ionogels, to meet various application conditions for the next-generation theranostics wearable electronic devices. STATEMENT OF SIGNIFICANCE: 1. A dual-network ionogel with tuned mechanical properties was prepared using a simple one-pot method. 2. The ionogel exhibited superior conductivity, antifreeze, anti-swelling, good adhesion and antibacterial properties. 3. The prepared ionogel demonstrated good performance in rat ECG and EMG signal and high sensitivity to finger bending motions. 4. The ionogel could promote the healing of infected wounds. 5. Offer valuable guidance for the theranostic wearable electronics.
Collapse
Affiliation(s)
- Lanbo Shen
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; Department of Biomaterials, School and Hospital of Stomatology, Shandong University, Jinan 250012, China
| | - Tingting Kong
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Department of Stomatology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Jiahao Yu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zilong Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China.
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Shandong University, Jinan 250012, China.
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
2
|
Wang Y, Li Z, Ji L, Sun J, Gao F, Yu R, Li K, Wang W, Zhao W, Zhong QZ, Ge S, Li J. Adhesive micro-liquid for efficient removal of bacterial biofilm infection. Mater Today Bio 2025; 31:101525. [PMID: 39958232 PMCID: PMC11830298 DOI: 10.1016/j.mtbio.2025.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/18/2025] Open
Abstract
Bacteria are common infectious pathogens that can cause invasive and potentially life-threatening infections. Ionic liquids have emerged as a novel class of alternatives to antibiotics, however their inherent hydrophobicity and immiscible in water exhibits poor adhesion to bacteria and diminishes its utilization and bioavailability for infection control. Herein, an adhesive metal phenolic encapsulated ionic liquid choline and geranate (CAGE@MPN) microcapsules is designed to address the aforementioned challenges and remove bacterial biofilm infections. The CAGE@MPN microcapsules are prepared through self-assembly of quercetin and ferrous ions on the interface of CAGE and water via metal-phenolic coordination. The MPN interface can stabilize the micro liquid and effectively adhere to bacterial surfaces. The microcapsules can disrupt bacterial cell walls to facilitate the release of cellular contents and destruct the biofilm, thereby exerting a pronounced bactericidal effect. The in vivo bactericidal effect of CAGE@MPN microcapsules is demonstrated in a murine model of Staphylococcus aureus (S. aureus) skin infection. The proposed adhesive micro-liquid system offers a promising strategy for noninvasive and efficient removal of bacterial biofilm infection.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Zhibang Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Lingli Ji
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jiao Sun
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Fei Gao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Ruiqing Yu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Kai Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Wenjun Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Qi-Zhi Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| |
Collapse
|
3
|
Wang Y, Li Z, Yu R, Chen Y, Wang D, Zhao W, Ge S, Liu H, Li J. Metal-phenolic network biointerface-mediated cell regulation for bone tissue regeneration. Mater Today Bio 2025; 30:101400. [PMID: 39759849 PMCID: PMC11699301 DOI: 10.1016/j.mtbio.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Bone tissue regeneration presents a significant challenge in clinical treatment due to inadequate coordination between implant materials and reparative cells at the biomaterial-bone interfaces. This gap underscores the necessity of enhancing interaction modulation between cells and biomaterials, which is a crucial focus in bone tissue engineering. Metal-polyphenolic networks (MPN) are novel inorganic-organic hybrid complexes that are formed through coordination interactions between phenolic ligands and metal ions. These networks provide a multifunctional platform for biomedical applications, with the potential for tailored design and modifications. Despite advances in understanding MPN and their role in bone tissue regeneration, a comprehensive overview of the related mechanisms is lacking. Here, we address this gap by focusing on MPN biointerface-mediated cellular regulatory mechanisms during bone regeneration. We begin by reviewing the natural healing processes of bone defects, followed by a detailed examination of MPN, including their constituents and distinctive characteristics. We then explore the regulatory influence of MPN biointerfaces on key cellular activities during bone regeneration. Additionally, we illustrate their primary applications in addressing inflammatory bone loss, regenerating critical-size bone defects, and enhancing implant-bone integration. In conclusion, this review elucidates how MPN-based interfaces facilitate effective bone tissue regeneration, advancing our understanding of material interface-mediated cellular control and the broader field of tissue engineering.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Zhibang Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Ruiqing Yu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yi Chen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Danyang Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| |
Collapse
|
4
|
Chen K, Liu Y, Duan G, Shi M, Yang C, Xing R, Yan X. Biomolecular Condensates Based on Amino Acid for Enhancing Oral Bioavailability and Therapeutic Efficacy of Hydrophobic Drugs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58370-58378. [PMID: 39404746 DOI: 10.1021/acsami.4c13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The oral administration of chemo- or immunotherapeutic drugs presents a compelling alternative for patients with malignant colorectal cancer, offering a convenient and patient-compliant "hospital-free" strategy. Unfortunately, the hydrophobic nature of many drug candidates, alongside the harsh conditions of the gastrointestinal tract, frequently results in suboptimal bioavailability and heightened systemic toxicity. To address these challenges, we harnessed the unique properties of biomolecular condensates, which form through a liquid-liquid phase separation mechanism, to develop a versatile platform for drug encapsulation and delivery. In this study, we introduce a reliable and effective amorphous oral drug delivery system based on biomolecular condensates derived from the amino acid derivative N-(benzyloxycarbonyl)-l-proline (ZP). These ZP condensates exhibit dynamic intermolecular interactions and possess unique physicochemical attributes such as fluidity and viscoelasticity. They significantly improve the solubility of hydrophobic drugs, ensuring enhanced stability and optimized pharmacokinetics under physiological and gastrointestinal conditions. By maintaining drugs in an amorphous state, we substantially increased drug bioavailability and markedly improved pharmacokinetics. Furthermore, the ZP condensates demonstrate potential as an integrated therapeutic platform capable of potentiating the synergies between chemotherapy and immunotherapy while concurrently reducing systemic toxicity. This has resulted in a significant enhancement of chemo-immunotherapy efficacy in the treatment of colorectal cancer, representing a notable advancement in drug delivery and oncology.
Collapse
Affiliation(s)
- Kaiwei Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Liu
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guifang Duan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mengqian Shi
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaojuan Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Guo Z, Hou Y, Tian Y, Tian J, Hu J, Zhang Y. Antimicrobial Peptide Hydrogel with pH-Responsive and Controllable Drug Release Properties for the Efficient Treatment of Helicobacter pylori Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51981-51993. [PMID: 39292612 DOI: 10.1021/acsami.4c09185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Helicobacter pylori is the primary cause of gastric adenocarcinoma, which afflicts more than half of the world's population and seriously affects human health. However, achieving efficient treatment of H. pylori infection by effective drug delivery and bioavailability after oral administration remains a challenge due to the harsh microenvironment, short drug retention time, and physiological barriers in the stomach. Moreover, H. pylori has shown resistance to many clinical antibiotics. Antimicrobial peptides (AMPs) exhibit substantial therapeutic efficacy against H. pylori, while they are not likely to induce drug resistance, suggesting their potential utility for the treatment of diseases related to H. pylori. In this paper, we report the design and synthesis of an AMP (GE33) hydrogel with pH-responsive and controlled peptide release properties, in which the minimal inhibitory concentration of the AMP against H. pylori is as low as 1 μg/mL. GE33 self-assembles into a stable peptide hydrogel under neutral pH conditions but decomposes into monomers or oligomers under acidic conditions. Upon oral administration of the hydrogel, the acidic gastric environment would facilitate rapid release of active AMP molecules from the hydrogel and immediate targeting of H. pylori in the stomach wall. Additionally, the remaining peptide is protected in the hydrogel, extending its retention time in the stomach, so that persistent drug release is achieved. The controlled and sustained release manner of the active molecule GE33, which enhances drug bioavailability, along with its excellent bactericidal efficacy opens a great potential for treating H. pylori infection.
Collapse
Affiliation(s)
- Zhen Guo
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Rd., Pudong, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakun Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
7
|
Shen Y, Feng Y, Liang S, Liang C, Li B, Wang D, Sun J. In Situ Gelation Strategy for Efficient Drug Delivery in a Gastrointestinal System. ACS Biomater Sci Eng 2024; 10:5252-5264. [PMID: 39038263 DOI: 10.1021/acsbiomaterials.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developing a microenvironment-responsive drug delivery system (DDS) for the gastrointestinal system is of great interest to enhance drug efficiency and minimize side effects. Unfortunately, the rapid-flowing digestive juice in the gastrointestinal tract and the continuous contraction and peristalsis of the gastrointestinal tract muscle accelerate the elimination of drug carriers. In this study, a boric hydroxyl-modified mesoporous Mg(OH)2 drug carrier is prepared to prolong the drug retention time. Results show that the newly designed DDS presents high biocompatibility and can immediately turn the free polyhydric alcohol molecules into a gelation form. The in situ-formed gelation network presents high viscosity and can prevent the drug carriers from being washed away by the digestive juice in the gastrointestinal tract.
Collapse
Affiliation(s)
- Yucui Shen
- Endoscopy Center, Shanghai Fourth People's Hospital, Tongji University, School of Medicine, Shanghai 200434, China
| | - Ye Feng
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shengjie Liang
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Chunyong Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Donghui Wang
- Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jianwei Sun
- Guangzhou Special Service Recuperation Center of PLA Rocket Force, Guangzhou 510515, China
| |
Collapse
|
8
|
Yang X, Shao J, Zhang Y, Wang T, Ge S, Li J. Microenvironment-Driven Fenton Nanoreactor Enabled by Metal-Phenolic Encapsulation of Calcium Peroxide for Effective Control of Dental Caries. Adv Healthc Mater 2024; 13:e2303466. [PMID: 37985941 DOI: 10.1002/adhm.202303466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Caries are one of the most common oral diseases caused by pathogenic bacterial infections, which are widespread and persistently harmful to human health. Using nanoparticles to invade biofilms and produce reactive oxygen species (ROS) in situ is a promising strategy for killing bacteria and disrupting the structure of biofilms. In this work, a biofilm-targeting Fenton nanoreactor is reported that can generate ROS responsive to the cariogenic microenvironment. The nanoreactor is constructed by metal-phenolic encapsulation of calcium peroxide (CaO2) followed by modification with a biofilm targeting ligand dextran. Within the cariogenic biofilm, the Fenton nanoreactor is activated by an acidic microenvironment to be decomposed into H2O2 and iron ions, triggering a Fenton-like reaction to generate ROS that can eliminate the biofilm by breaking down extracellular polymeric substances (EPS) and killing cariogenic bacteria. Meanwhile, the depletion of excess protons in biofilm leads to a reversal of the cariogenic microenvironment. The Fenton nanoreactor can effectively inhibit the biofilm formation of Streptococcus mutans on ex vivo human teeth and is effective in preventing caries meanwhile maintaining the oral microbial diversity in rat caries infection model. This work provides a novel and efficient modality for acid microenvironment-driven ROS therapy.
Collapse
Affiliation(s)
- Xiaoru Yang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Yandi Zhang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Ting Wang
- Department of General Debtistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| |
Collapse
|
9
|
Cheng J, Zhang H, Lu K, Zou Y, Jia D, Yang H, Chen H, Zhang Y, Yu Q. Bi-functional quercetin/copper nanoparticles integrating bactericidal and anti-quorum sensing properties for preventing the formation of biofilms. Biomater Sci 2024; 12:1788-1800. [PMID: 38390988 DOI: 10.1039/d4bm00034j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Biofilms formed by pathogenic bacteria present a persistent risk to human health. While the eradication of matured biofilms remains a formidable challenge, delaying or preventing their formation, which is coordinately regulated by quorum sensing (QS), presents a simpler and more advantageous strategy. Quercetin, a naturally occurring compound with anti-QS properties, has the potential to act as an antibiofilm agent. However, it is plagued by certain inherent drawbacks, including poor water solubility and limited bioavailability. Furthermore, solely blocking QS is not enough to prevent biofilm formation because it lacks bactericidal properties. To address these difficulties, we fabricated bi-functional nanoparticles through the co-assembly of quercetin and copper ions in a facile manner. The resulting quercetin/copper nanoparticles (QC NPs) demonstrated minimal cytotoxicity and hemolysis in vitro. In response to the low pH of microenvironments that were populated by bacterial colonies, the QC NPs underwent disassembly to release copper ions and quercetin. The former exterminated bacteria by disrupting the integrity of the cell membrane, while the latter disrupted the processes involved in QS that are responsible for the biofilm by downregulating the expression of specific genes, effectively preventing the formation of biofilms by both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. In addition, the QC NPs were integrated into a bacterial cellulose membrane. The composite membrane proved to be highly effective at inhibiting biofilm formation in vitro and demonstrated the ability to reduce inflammatory responses and accelerate the healing of bacteria-infected wounds in vivo. Overall, the bi-functional QC NPs hold great potential for use in addressing the challenges associated with the management of bacterial biofilms.
Collapse
Affiliation(s)
- Jingjing Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Hong Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
10
|
Tan X, Sheng R, Liu Z, Li W, Yuan R, Tao Y, Yang N, Ge L. Assembly of Metal-Phenolic Networks onto Microbubbles for One-Step Generation of Functional Microcapsules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305325. [PMID: 37641191 DOI: 10.1002/smll.202305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The one-step assembly of metal-phenolic networks (MPNs) onto particle templates can enable the facile, rapid, and robust construction of hollow microcapsules. However, the required template removal step may affect the refilling of functional species in the hollow interior space or the in situ encapsulation of guest molecules during the formation of the shells. Herein, a simple strategy for the one-step generation of functional MPNs microcapsules is proposed. This method uses bovine serum albumin microbubbles (BSA MBs) as soft templates and carriers, enabling the efficient pre-encapsulation of guest species by leveraging the coordination assembly of tannic acid (TA) and FeIII ions. The addition of TA and FeIII induces a change in the protein conformation of BSA MBs and produces semipermeable capsule shells, which allow gas to escape from the MBs without template removal. The MBs-templated strategy can produce highly biocompatible capsules with controllable structure and size, and it is applicable to produce other MPNs systems like BSA-TA-CuII and BSA-TA-NiII . Finally, those MBs-templated MPNs capsules can be further functionalized or modified for the loading of magnetic nanoparticles and the pre-encapsulation of model molecules through covalence or physical adsorption, exhibiting great promise in biomedical applications.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Zonghao Liu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Weikun Li
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Renqiang Yuan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing, 210009, P. R. China
| | - Yinghua Tao
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ning Yang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Liqin Ge
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
11
|
Hu Y, Xing Y, Yue H, Chen T, Diao Y, Wei W, Zhang S. Ionic liquids revolutionizing biomedicine: recent advances and emerging opportunities. Chem Soc Rev 2023; 52:7262-7293. [PMID: 37751298 DOI: 10.1039/d3cs00510k] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Ionic liquids (ILs), due to their inherent structural tunability, outstanding miscibility behavior, and excellent electrochemical properties, have attracted significant research attention in the biomedical field. As the application of ILs in biomedicine is a rapidly emerging field, there is still a need for systematic analyses and summaries to further advance their development. This review presents a comprehensive survey on the utilization of ILs in the biomedical field. It specifically emphasizes the diverse structures and properties of ILs with their relevance in various biomedical applications. Subsequently, we summarize the mechanisms of ILs as potential drug candidates, exploring their effects on various organisms ranging from cell membranes to organelles, proteins, and nucleic acids. Furthermore, the application of ILs as extractants and catalysts in pharmaceutical engineering is introduced. In addition, we thoroughly review and analyze the applications of ILs in disease diagnosis and delivery systems. By offering an extensive analysis of recent research, our objective is to inspire new ideas and pathways for the design of innovative biomedical technologies based on ILs.
Collapse
Affiliation(s)
- Yanhui Hu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuyuan Xing
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Yue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanyan Diao
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|