1
|
He J, Wu J, Park CB, Gong P, Liang C, Li G. Multifunctional phase-change composites for green electromagnetic interference shielding and thermal response prepared under the guidance of an impedance matching strategy. NANOSCALE 2024; 16:16622-16631. [PMID: 39163094 DOI: 10.1039/d4nr02654c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
With the advent of the information age, electromagnetic hazards are becoming more serious. In view of environmental protection, green electromagnetic interference (EMI) shielding materials with little or no secondary reflection have become the ideal choice. In this paper, by freeze-drying, high-temperature carbonization, coating and impregnation backfilling, we prepared carbonized Ni-MOF/reduced graphene oxide/silver nanowire-polyimide@polyethylene glycol composites (Ni@C/r-GO/AgNW-PI@PEG) with gradient conductivity based on impedance matching. The impedance matching layer Ni@C/r-GO-300 reduces the reflection of electromagnetic waves from the surface of the material, the dissipation layer Ni@C/r-GO-600 provides excellent electromagnetic wave dissipation capability, and the reflection layer AgNW-PI ensures that the electromagnetic waves are reflected back into the material. Meanwhile, the EMI shielding performance value of Ni@C/r-GO/AgNW-PI@PEG reaches 62.3 dB with an ultra-low reflectivity (R) of 0.04. In CST simulations, the intrinsic mechanism of electromagnetic energy loss within the material is revealed by energy loss density cloud maps. In addition, heat from high-temperature objects is transferred through the highly thermally conductive AgNW-PI membrane to the long-channel Ni@C/r-GO backbone. Therefore, the composites prepared on the basis of impedance matching will accelerate the use of EMI shielding materials for the thermal management of portable electronic devices and battery heat dissipation packaging.
Collapse
Affiliation(s)
- Jie He
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiaozu Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chul B Park
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Pengjian Gong
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chaobo Liang
- Key Laboratory of Functional Nanocomposites of Shanxi Province, School of Materials Science and Engineering, North University of China, Taiyuan 030051, P.R. China.
| | - Guangxian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Guo Y, Wang S, Zhang H, Guo H, He M, Ruan K, Yu Z, Wang GS, Qiu H, Gu J. Consistent Thermal Conductivities of Spring-Like Structured Polydimethylsiloxane Composites under Large Deformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404648. [PMID: 38970529 DOI: 10.1002/adma.202404648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Flexible and highly thermally conductive materials with consistent thermal conductivity (λ) during large deformation are urgently required to address the heat accumulation in flexible electronics. In this study, spring-like thermal conduction pathways of silver nanowire (S-AgNW) fabricated by 3D printing are compounded with polydimethylsiloxane (PDMS) to prepare S-AgNW/PDMS composites with excellent and consistent λ during deformation. The S-AgNW/PDMS composites exhibit a λ of 7.63 W m-1 K-1 at an AgNW amount of 20 vol%, which is ≈42 times that of PDMS (0.18 W m-1 K-1) and higher than that of AgNW/PDMS composites with the same amount and random dispersion of AgNW (R-AgNW/PDMS) (5.37 W m-1 K-1). Variations in the λ of 20 vol% S-AgNW/PDMS composites are less than 2% under a deformation of 200% elongation, 50% compression, or 180° bending, which benefits from the large deformation characteristics of S-AgNW. The heat-transfer coefficient (0.29 W cm-2 K-1) of 20 vol% S-AgNW/PDMS composites is ≈1.3 times that of the 20 vol% R-AgNW/PDMS composites, which reduces the temperature of a full-stressed central processing unit by 6.8 °C compared to that using the 20 vol% R-AgNW/PDMS composites as a thermally conductive material in the central processing unit.
Collapse
Affiliation(s)
- Yongqiang Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuangshuang Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Haitian Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - MuKun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Ze Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Guang-Sheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
3
|
Cao H, Li SZ, Yang J, Liu ZY, Bai L, Yang W. Thermally Conductive Magnetic Composite Phase Change Materials for Anisotropic Photo/Magnetic-to-Thermal Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55723-55733. [PMID: 37992260 DOI: 10.1021/acsami.3c12302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The distinctive thermal energy storage properties of phase change materials (PCMs) are critical for solving energy issues. However, their inherently low thermal conductivity and limited energy conversion capability impede their applications in advanced thermal energy harvesting and storage systems. Herein, we developed magnetic composite PCMs with enhanced thermal conductivity for anisotropic photothermal and magnetic-to-thermal energy conversions. The hierarchically interconnected ferroferric oxide-coated boron nitride/poly(vinyl alcohol) (BN@Fe3O4/PVA) porous scaffolds were constructed by a unidirectional freeze-casting method to enhance the directional heat transfer capability of the composite PCMs with a through-plane thermal conductivity of 1.84 W m-1 K-1 at a BN@Fe3O4 loading of 25.4 wt %. The superparamagnetic Fe3O4 nanoparticles endow the composite PCMs with unique solar absorption and magnetic response properties, and the energy conversion efficiency can be regulated by controlling the orientation of the synthesized magnetic particles in the composite PCMs. As a consequence, the resulting composite PCMs exhibit superior photo/magnetic-to-thermal energy conversion efficiency along the direction of orientation of magnetic particles. These novel findings provide an instructive guide to yield composite PCMs for efficient energy conversion.
Collapse
Affiliation(s)
- Hong Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang-Zhu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lu Bai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Guo Y, Ruan K, Wang G, Gu J. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci Bull (Beijing) 2023:S2095-9273(23)00290-6. [PMID: 37179235 DOI: 10.1016/j.scib.2023.04.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Polymer composites have essential applications in electronics due to their versatility, stable performance, and processability. However, with the increasing miniaturization and high power of electronics in the 5G era, there are significant challenges related to heat accumulation and electromagnetic wave (EMW) radiation in narrow spaces. Traditional solutions involve using either thermally conductive or EMW absorbing polymer composites, but these fail to meet the demand for multi-functional integrated materials in electronics. Therefore, designing thermal conduction and EMW absorption integrated polymer composites has become essential to solve the problems of heat accumulation and electromagnetic pollution in electronics and adapt to its development trend. Researchers have developed different approaches to fabricate thermal conduction and EMW absorption integrated polymer composites, including integrating functional fillers with both thermal conduction and EMW absorption functions and innovating processing methods. This review summarizes the latest research progress, factors that affect performance, and the mechanisms of thermal conduction and EMW absorption integrated polymer composites. The review also discusses problems that limit the development of these composites and potential solutions and development directions. The aim of this review is to provide references for the development of thermal conduction and EMW absorption integrated polymer composites.
Collapse
Affiliation(s)
- Yongqiang Guo
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Kunpeng Ruan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Guangsheng Wang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|