1
|
Roshanzadeh A, Medeiros HCD, Herrera CK, Malhado C, Tomich AW, Fisher SP, Lovera SO, Bates M, Lavallo V, Lunt RR, Lunt SY. Next-Generation Photosensitizers: Cyanine-Carborane Salts for Superior Photodynamic Therapy of Metastatic Cancer. Angew Chem Int Ed Engl 2025; 64:e202419759. [PMID: 39841576 PMCID: PMC11848969 DOI: 10.1002/anie.202419759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-]. The implementation of [cyanine+] [carborane-] salts dramatically enhance cancer targeting of the PSs and decrease cytotoxicity. We characterize the cellular uptake of the cyanine-carborane PSs, organelle localization, generation of reactive oxygen species (ROS) with the ability to cogenerate multiple ROS species, suppression of pro-metastatic pathways, and activation of apoptotic pathways. We further demonstrate the ability of optimized PSs to eliminate tumors in vivo using an orthotopic mouse model of breast cancer. These newly developed [cyanine+] [carborane-] salt PSs introduce a potent therapeutic approach against aggressive breast cancer while decreasing side effects.
Collapse
Affiliation(s)
- Amir Roshanzadeh
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824United States
| | - Hyllana C. D. Medeiros
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824United States
| | - Christopher K. Herrera
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| | - Carson Malhado
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| | - Anton W. Tomich
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Steven P. Fisher
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Sergio O. Lovera
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Matthew Bates
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| | - Vincent Lavallo
- Department of ChemistryUniversity of CaliforniaRiversideCA 92521United States
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
- Department of Physics and AstronomyMichigan State UniversityEast LansingMI 48824United States
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI 48824United States
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI 48824United States
| |
Collapse
|
2
|
Pugachev AD, Kozlenko AS, Sazykina MA, Sazykin IS, Rostovtseva IA, Makarova NI, Borodkin GS, Tkachev VV, Utenyshev AN, Demidov OP, Matukhno AE, Ponyatovskaya AM, Azhogina TN, Karchava SK, Klimova MV, Aldoshin SM, Metelitsa AV, Ozhogin IV. Anion and Substituents Effect on Spectral-Kinetic and Biological Characteristics of Spiropyran Salts. Chembiochem 2025; 26:e202400800. [PMID: 39530864 DOI: 10.1002/cbic.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Spiropyran salts containing a cationic vinyl-3H-indolium moiety are characterized by NIR absorption and fluorescence of their merocyanine forms. This feature makes them promising fluorescent probes and markers for bioimaging. The article focuses on the synthesis and study of the spectral, kinetic and toxic characteristics of such compounds with respect to various substituents in different moieties and the type of anion. A detailed analysis of the acquired data made it possible to draw some important conclusions regarding the influence of structural factors, which will be very useful for the further rational design of such derivatives. In particular, it was shown that the counterion has minimal effect on the spectral and kinetic characteristics of the dyes but dramatically affects the toxicity of the compounds. Following selection of the most appropriate compounds, bioimaging experiments were carried out to visualize planktonic bacteria and bacterial biofilms of E. coli and A. calcoaceticus. The ability to visualize biofilms is critical for the diagnosis of chronic diseases. By the results of molecular docking a theoretical interaction pattern between spiropyran molecules and DNA was proposed.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Anastasiia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Marina A Sazykina
- Academy of Biology and Biotechnologies, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Ivan S Sazykin
- Academy of Biology and Biotechnologies, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Gennady S Borodkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Valery V Tkachev
- Laboratory of Structural Chemistry, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Ac. Semenov ave., Moscow Region, Chernogolovka, 142432, Russian Federation
| | - Andrei N Utenyshev
- Laboratory of Structural Chemistry, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Ac. Semenov ave., Moscow Region, Chernogolovka, 142432, Russian Federation
| | - Oleg P Demidov
- Department of Chemistry, North-Caucasus Federal University, 1 Pushkina str., Stavropol, 355017, Russian Federation
| | - Alexey E Matukhno
- Research Center for Neurotechnology, Southern Federal University, 194 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Arina M Ponyatovskaya
- Research Center for Neurotechnology, Southern Federal University, 194 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Tatiana N Azhogina
- Academy of Biology and Biotechnologies, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Shorena K Karchava
- Academy of Biology and Biotechnologies, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Maria V Klimova
- Academy of Biology and Biotechnologies, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Sergey M Aldoshin
- Laboratory of Structural Chemistry, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, 1 Ac. Semenov ave., Moscow Region, Chernogolovka, 142432, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
3
|
Zheng Y, Chen T, Gao Y, Chen H. Counterion influence on near-infrared-II heptamethine cyanine salts for photothermal therapy. Bioorg Chem 2024; 145:107206. [PMID: 38367428 DOI: 10.1016/j.bioorg.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Photothermal therapy (PTT) has attracted extensive attention in cancer treatment. Heptamethine cyanine dyes with near-infrared (NIR) absorption performance have been investigated for PTT. However, they are often accompanied by poor photostability, suboptimal photothermal conversion and limited therapeutic efficacy. The photophysical properties of fluorescent organic salts can be tuned through counterion pairing. However, whether the counterion can influence the photostability and photothermal properties of heptamethine cyanine salts has not been clarified. In this work, we investigated the effects of eleven counter anions on the physical and photothermal properties of NIR-II heptamethine cyanine salts with the same heptamethine cyanine cation. The anions have great impacts on the physiochemical properties of dyes in solution including aggregation, photostability and photothermal conversion efficiency. The physical tuning enables the control over the cytotoxicity and phototoxicity of the dyes. The selected salts have been demonstrated to significantly suppress 4T1 breast tumor growth with low toxicity. The findings that the counterion has great effects on the photothermal properties of cationic NIR-II heptamethine cyanine dyes will provide a reference for the preparation of improved photothermal agents through counterion pairing with possible translation to humans.
Collapse
Affiliation(s)
- Yilin Zheng
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Tingyan Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Masuoka H, Kubota Y, Inuzuka T, Funabiki K. Synthesis of Near-Infrared-Absorbing Anionic Heptamethine Cyanine Dyes with Trifluoromethyl Groups. Molecules 2023; 28:4650. [PMID: 37375210 DOI: 10.3390/molecules28124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
A novel anionic heptamethine cyanine (HMC) dye with two trifluoromethyl groups that selectively absorb near-infrared light is synthesized. When contrasted with previously studied anionic HMC dyes with substituents such as methyl, phenyl, and pentafluorophenyl groups, the trifluoromethylated dye displays a red-shifted maximum absorption wavelength (for instance, 948 nm in CH2Cl2) along with enhanced photostability. Furthermore, HMC dyes with broad absorption in the near-infrared region are synthesized by combining a trifluoromethylated anionic HMC dye with a cationic HMC dye as a counterion.
Collapse
Affiliation(s)
- Hiroki Masuoka
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|