1
|
Zhou Y, Liang Y, Wu Z, Wang X, Guan R, Li C, Qiao F, Wang J, Fu Y, Baek J. Amorphous/Crystalline Heterostructured Nanomaterials: An Emerging Platform for Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411941. [PMID: 40018813 PMCID: PMC11947523 DOI: 10.1002/smll.202411941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/07/2025] [Indexed: 03/01/2025]
Abstract
With the expanding adoption of large-scale energy storage systems and electrical devices, batteries and supercapacitors are encountering growing demands and challenges related to their energy storage capability. Amorphous/crystalline heterostructured nanomaterials (AC-HNMs) have emerged as promising electrode materials to address these needs. AC-HNMs leverage synergistic interactions between their amorphous and crystalline phases, along with abundant interface effects, which enhance capacity output and accelerate mass and charge transfer dynamics in electrochemical energy storage (EES) devices. Motivated by these elements, this review provides a comprehensive overview of synthesis strategies and advanced EES applications explored in current research on AC-HNMs. It begins with a summary of various synthesis strategies of AC-HNMs. Diverse EES devices of AC-HNMs, such as metal-ion batteries, metal-air batteries, lithium-sulfur batteries, and supercapacitors, are thoroughly elucidated, with particular focus on the underlying structure-activity relationship among amorphous/crystalline heterostructure, electrochemical performance, and mechanism. Finally, challenges and perspectives for AC-HNMs are proposed to offer insights that may guide their continued development and optimization.
Collapse
Affiliation(s)
- Yan Zhou
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Yihua Liang
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Zhen Wu
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Xinlei Wang
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Runnan Guan
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic FrameworksUlsan National Institute of Science and Technology (UNIST)50 UNISTUlsan44919South Korea
| | - Changqing Li
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic FrameworksUlsan National Institute of Science and Technology (UNIST)50 UNISTUlsan44919South Korea
| | - Fen Qiao
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Junfeng Wang
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
- School of Energy and Power EngineeringChongqing UniversityChongqing400044China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094China
| | - Jong‐Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic FrameworksUlsan National Institute of Science and Technology (UNIST)50 UNISTUlsan44919South Korea
| |
Collapse
|
2
|
Sun M, Wang Z, Xiao J, Tian X, Ma X, Wang S. AgNWs/Fe 3O 4@NC Conductive Network Hierarchical Assembly to Prepare Flexible EMI Shielding Textile. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304622. [PMID: 37988675 DOI: 10.1002/smll.202304622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/07/2023] [Indexed: 11/23/2023]
Abstract
With the rapid development of high-power electronic instruments and communication technology, efficient electromagnetic shielding materials with strong absorption of electromagnetic waves and low reflection characteristics have become the focus of the world's attention. This study designs and synthesizes N-doped carbon-coated hollow Fe3O4 nanospheres (Fe3O4@NC) by spraying Ag nanowires (AgNWs) on textiles as conductive networks. Because of the high permeability and hollow structure Fe3O4@NC, electromagnetic wave goes through a unique process of "absorption, reflection, and reabsorption" when it passes through the surface of the composite textile. In X-band (≈8.2-12.4 GHz), the average electromagnetic interference shielding effectiveness (EMI SE) reaches 50.1 dB, while the reflectance shielding efficiency (SER) is only 2.6 dB, and the average reflectance power coefficient (R) is as low as 0.45. The composite fabric has excellent properties and provides an effective strategy for electromagnetic interference shielding based on absorption.
Collapse
Affiliation(s)
- Minghui Sun
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Zhuoping Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Junwu Xiao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Xin Tian
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Xin Ma
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| | - Shuai Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, Hubei Province, 430074, P. R. China
| |
Collapse
|
3
|
Zheng Y, Wang L, Pang J, Sun K, Hou J, Wang G, Guo W, Chen L. Ni 3S 2/Co 9S 8 embedded poor crystallinity NiCo layered double hydroxides hierarchical nanostructures for efficient overall water splitting. J Colloid Interface Sci 2023; 637:85-93. [PMID: 36689800 DOI: 10.1016/j.jcis.2023.01.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Nickel-cobalt bimetallic layered double hydroxides (NiCo LDHs) are potential electrocatalysts with high performance and stability for overall water-splitting. However, its weak conductivity limits its practical applications. Herein, a simple hydrothermal in-situ conversion strategy is employed for constructing the novel heterogeneous electrocatalyst of Ni3S2/Co9S8 embedded poor crystallinity (Pc) NiCo LDH nanosheet arrays grown on the Ni foam (Pc-NiCo LDH/ Ni3S2/Co9S8), which can improve the conductivity via regulating the crystallinity. The crystallinity of NiCo LDH is well regulated by adjusting the amount of sulfur source, and the construction of Ni3S2/Co9S8 heterostructure exposes more active sites, improves the electrical conductivity, enhances the electronic interaction between NiCo LDH and Ni3S2/Co9S8, and significantly promotes the kinetics of water splitting. The optimized Pc-NiCo LDH/Ni3S2/Co9S8 hierarchical structure as both the anode and cathode exhibit the overall water splitting performance with the cell voltage of only 1.744 V to achieve the current density of 50 mA cm-2 in the alkaline media and shows the competitive H2 and O2 production rate of 6.4 and 3.1 μL s-1, respectively, suggesting its potential practical applications. This work provides a novel idea for the design of multiphase composite electrocatalysts applied in water splitting.
Collapse
Affiliation(s)
- Yang Zheng
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Liping Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jianxiang Pang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Kaisheng Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Juan Hou
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Gang Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Wen Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Long Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
4
|
Wang L, Cheng Y, Xiong J, Zhao Z, Zhang D, Hu Z, Zhang H, Wu Q, Chen L. Sea urchin-like amorphous MgNiCo mixed metal hydroxide nanoarrays for efficient overall water splitting under industrial electrolytic conditions. Dalton Trans 2023; 52:3438-3448. [PMID: 36825845 DOI: 10.1039/d3dt00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Exploring amorphous mixed transition metal hydroxide electrocatalysts with high performance and stability for overall water splitting is a difficult challenge under industrial electrolytic conditions. Herein, a sea urchin-like amorphous MgNiCo hydroxide (MgxNi1-xCo-OH, 0 < x < 1), self-assembled from nanowire arrays, is synthesized by the hydrothermal process. The synergistic effect between Mg and Ni/Co adjusts their crystal structure and morphology, which can improve the inherent activity and provide more active sites. Benefiting from the favorable structural features, Mg0.5Ni0.5Co-OH exhibits superior electrocatalytic oxygen and hydrogen evolution reaction (OER and HER) activity with a low overpotential of 277 and 110 mV (10 mA cm-2) in 1 M KOH at 25 °C. Furthermore, overpotentials of 239 and 197 mV are required to achieve a current density of 50 mA cm-2 for the OER and HER under simulated industrial electrolysis conditions (5 M KOH at 65 °C). Notably, Mg0.5Ni0.5Co-OH remarkably accelerates water splitting with a low voltage of 1.938 and 1.699 V for 50 mA cm-2 in 1 M KOH at 25 °C and 5 M KOH at 65 °C, respectively. This work presents a novel amorphous strategy to design and construct sea urchin-like mixed metal hydroxide bifunctional efficient electrocatalysts for industrial applications.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Yikun Cheng
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Jiahao Xiong
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Zhiwen Zhao
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Dingbo Zhang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Zhiyan Hu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Haoyu Zhang
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Qin Wu
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Long Chen
- Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|