1
|
Jiang L, Dong J, Jiang M, Tan W, Zeng Y, Liu X, Wang P, Jiang H, Zhou J, Liu X, Li H, Liu L. 3D-printed multifunctional bilayer scaffold with sustained release of apoptotic extracellular vesicles and antibacterial coacervates for enhanced wound healing. Biomaterials 2025; 318:123196. [PMID: 39965422 DOI: 10.1016/j.biomaterials.2025.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Full-thickness skin defects pose significant challenges to physical and psychological health while traditional skin grafting techniques are associated with limitations. Herein, we present a 3D-printed multifunctional bilayer scaffold that incorporates apoptotic extracellular vesicles (ApoEVs) and antibacterial coacervates to prevent wound infection and promote wound healing. The ApoEVs were continuously released from the lower layer of the scaffold with large pores to promote angiogenesis and collagen deposition. Meanwhile, the pH-responsive curcumin-containing coacervates were released from the upper layer of the scaffold with dense pores to exert antibacterial and reactive oxygen species scavenging ability. In vivo experiments showed that the scaffold accelerated wound healing and improved healing quality by promoting a more organized collagen arrangement and reducing hyperplastic scar tissue. Furthermore, it effectively reduced hyperplastic scar tissue, resulting in a decrease in the average scar area from 73.3 % to 19.9 %. RNA sequencing analysis revealed that the scaffold upregulated genes associated with cell proliferation and downregulated genes related to inflammation, indicating its potential therapeutic applications for wound healing. This multifunctional bilayer scaffold represents a promising candidate for the treatment of full-thickness skin defects, offering rationales for designing skin scaffolds for regenerative medicine applications.
Collapse
Affiliation(s)
- Linli Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jia Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Minwen Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Weiwei Tan
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Yiwei Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuanqi Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Pu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hejin Jiang
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China.
| | - Xiaojing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Hui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China; Department of Biomaterials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, 48109, MI, United States.
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
2
|
Petit N, Gomes A, Chang YYJ, Da Silva J, Leal EC, Carvalho E, Gomes P, Browne S. Development of a bioactive hyaluronic acid hydrogel functionalised with antimicrobial peptides for the treatment of chronic wounds. Biomater Sci 2025. [PMID: 40331923 DOI: 10.1039/d5bm00567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Chronic wounds present significant clinical challenges due to delayed healing and high infection risk. This study presents the development and characterisation of acrylated hyaluronic acid (AcHyA) hydrogels functionalised with gelatin (G) and the antimicrobial peptide (AMP) PP4-3.1 to enhance cellular responses while providing antimicrobial activity. AcHyA-G and AcHyA-AMP hydrogels were formed via thiol-acrylate crosslinking, enabling in situ AcHyA hydrogel formation with stable mechanical properties across varying gelatin concentrations. Biophysical characterisation of AcHyA-G hydrogels showed rapid gelation, elastic behaviour, uniform mesh size, and consistent molecular diffusion across all formulations. Moreover, the presence of gelatin enhanced stability without affecting the hydrogel's degradation kinetics. AcHyA-G hydrogels supported the adhesion and spreading of key cell types involved in wound repair (dermal fibroblasts and endothelial cells), with 0.5% gelatin identified as the optimal effective concentration. Furthermore, the conjugation of the AMP conferred bactericidal activity against Staphylococcus aureus and Escherichia coli, two of the most prevalent bacterial species found in chronically infected wounds. These results highlight the dual function of AcHyA-AMP hydrogels in promoting cellular responses and antimicrobial activity, offering a promising strategy for chronic wound treatment. Further in vivo studies are needed to evaluate their efficacy, including in diabetic foot ulcers.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Ana Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Portugal
| | - Yu-Yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Jessica Da Silva
- University of Coimbra, Institute of Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), 3004-504 Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C Leal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Portugal
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
3
|
Markandeywar TS, Narang RK. Collagen and chitosan-based biogenic sprayable gel of silver nanoparticle for advanced wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5543-5567. [PMID: 39576302 DOI: 10.1007/s00210-024-03554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/19/2024] [Indexed: 04/11/2025]
Abstract
Silver nanoparticles have gained significant attention recently due to their unique antibacterial properties, making them promising candidates for wound care applications. This study proposes a novel approach for advanced wound care using a silver nanoparticle-impregnated biogenic spray hydrogel supplemented with collagen and chitosan. Silver nanoparticles were incorporated into the hydrogel (optimized by a QbD approach) to impart antimicrobial activity, crucial for combating wound infections and promoting faster healing. The study assessed the physical and chemical properties of the biogenic hydrogel, including its viscosity, pH, and nanoparticle dispersion characteristics. In vitro, antimicrobial efficacy against common wound pathogens and in vivo studies using chronic wound models in small animals portrayed the immense potential of the developed biogenic hydrogel in effectively reducing the bacterial load of broad-spectrum pathogens. The hydrogel exhibited excellent biocompatibility, supporting cell proliferation and tissue repair without toxic effects. It accelerated wound healing, improved collagen deposition, and enhanced tissue regeneration in the tested animals by reducing proinflammatory cytokines, ROS, and NF-kb levels. Overall, this innovative silver nanoparticle-impregnated biogenic spray hydrogel of collagen and chitosan presents a uniform spray pattern that proved efficient, showing a promising solution for advanced wound care. Its biocompatibility, safety, anti-inflammatory, antimicrobial efficacy, and wound healing properties hold great potential for improving the management of complex wounds, opening new avenues in wound care and regenerative medicine.
Collapse
Affiliation(s)
- Tanmay S Markandeywar
- I.K. Gujral Punjab Technical University (IKGPTU), Kapurthala Highway, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Ghal Kalan, G.T. Road, Moga, Punjab, 142001, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Ghal Kalan, G.T. Road, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Vasan A, Kim S, Davis E, Roh DS, Eyckmans J. Advances in Designer Materials for Chronic Wound Healing. Adv Wound Care (New Rochelle) 2025. [PMID: 40306934 DOI: 10.1089/wound.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Significance: Nonhealing or chronic wounds represent a significant and growing global health concern, imposing substantial burdens on individuals, health care systems, and economies worldwide. Although the standard-of-care treatment involves the application of wound dressings, most dressing materials are not specifically designed to address the pathological processes underlying chronic wounds. This review highlights recent advances in biomaterial design tailored to chronic wound healing. Recent Advances: Chronic wounds are characterized by persistent inflammation, impaired granulation tissue formation, and delayed re-epithelialization. Newly developed designer materials aim to manage reactive oxygen species and extracellular matrix degradation to suppress inflammation while promoting vascularization, cell proliferation, and epithelial migration to accelerate tissue repair. Critical Issues: Designing optimal materials for chronic wounds remains challenging due to the diverse etiology and a multitude of pathological mechanisms underlying chronic wound healing. While designer materials can target specific aberrations, designing a materials approach that restores all aberrant wound-healing processes remains the Holy Grail. Addressing these issues requires a deep understanding of how cells interact with the materials and the complex etiology of chronic wounds. Future Directions: New material approaches that target wound mechanics and senescence to improve chronic wound closure are under development. Layered materials combining the best properties of the approaches discussed in this review will pave the way for designer materials optimized for chronic wound healing.
Collapse
Affiliation(s)
- Anish Vasan
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Suntae Kim
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Emily Davis
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel S Roh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering and the Biological Design Center, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Palomeque Chávez JC, McGrath M, O'Connor C, Dervan A, Dixon JE, Kearney CJ, Browne S, O'Brien FJ. Development of a VEGF-activated scaffold with enhanced angiogenic and neurogenic properties for chronic wound healing applications. Biomater Sci 2025; 13:1993-2011. [PMID: 40012508 PMCID: PMC11865941 DOI: 10.1039/d4bm01051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Chronic wounds remain in a state of disrupted healing, impeding neurite outgrowth from injured nerves and poor development of new blood vessels by angiogenesis. Current therapeutic approaches primarily focus on the restoration of vascularization and overlook the need of nerve regeneration for complete healing. Vascular endothelial growth factor (VEGF) is a critical growth factor supporting angiogenesis in wound healing, promoting vascularization and has also demonstrated neuro-protective capabilities in both central and peripheral nervous system. While the delivery of pro-regenerative recombinant growth factors has shown promise, gene delivery offers greater stability, reduced off-target side effects, diminished cytotoxicity, and lower production costs. In this context, the overarching goal of this study was to develop a VEGF-activated scaffold with the potential to provide a multifaceted response that enhances both angiogenesis and nerve repair in wound healing through the localized delivery of plasmid encoding VEGF (pVEGF) encapsulated within the GET peptide system. Initially, delivery of pVEGF/GET nanoparticles to dermal fibroblasts led to higher VEGF protein expression without a compromise in cell viability. Transfection of dermal fibroblasts and endothelial cells on the VEGF-activated scaffolds resulted in enhanced VEGF expression, improved endothelial cell migration and organization into vascular-like structures. Finally, the VEGF-activated scaffolds consistently displayed enhanced neurogenic ability through improved neurite outgrowth from neural cells in in vitro and ex vivo models. Taken together, the VEGF-activated scaffold demonstrates multifaceted outcomes through the induction of pro-angiogenic and neurogenic responses from dermal, vascular and neural cells, illustrating the potential of this platform for the healing of chronic wounds.
Collapse
Affiliation(s)
- Juan Carlos Palomeque Chávez
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Kearney Lab, Department of Biomedical Engineering, University of Massachusetts, Armhest, USA
| | - Matthew McGrath
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Cian O'Connor
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies (RMCT), Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Cathal J Kearney
- Kearney Lab, Department of Biomedical Engineering, University of Massachusetts, Armhest, USA
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
O'Connor C, Mullally RE, McComish SF, O'Sullivan J, Woods I, Schoen I, Garre M, Caldwell MA, Dervan A, O'Brien FJ. Neurotrophic extracellular matrix proteins promote neuronal and iPSC astrocyte progenitor cell- and nano-scale process extension for neural repair applications. J Anat 2025; 246:585-601. [PMID: 39463075 PMCID: PMC11911129 DOI: 10.1111/joa.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications. This study aimed to provide an in-depth analysis of how different commonly used extracellular matrix proteins- laminin-1, Fn, collagen IV, and collagen I-affect the morphology and growth of trophic induced pluripotent stem cell (iPSC)-derived astrocyte progenitors and mouse motor neuron-like cells. Following a 7-day culture period, morphological assessments revealed that laminin-1, fibronectin, and collagen-IV, but not collagen I, promoted increased process extension and a stellate morphology in astrocytes, with collagen-IV yielding the greatest increases. Subsequent analysis of neurons grown on the different extracellular matrix proteins revealed a similar pattern with laminin-1, fibronectin, and collagen-IV supporting robust neurite outgrowth. fibronectin promoted the greatest increase in neurite extension, while collagen-I did not enhance neurite growth compared to poly-L-lysine controls. Super-resolution microscopy highlighted extracellular matrix-specific nanoscale changes in cytoskeletal organization, with distinct patterns of actin filament distribution where the three basement membrane-associated proteins (laminin-1, fibronectin, and collagen-IV) promoted the extension of fine cellular processes. Overall, this study demonstrates the potent effect of laminin-1, fibronectin and collagen-IV to promote both iPSC-derived astrocyte progenitor and neuronal growth, yielding detailed insights into the effect of extracellular matrix proteins on neural cell morphology at both the whole cell and nanoscale levels. The ability of laminin-1, collagen-IV and fibronectin to elicit strong growth-promoting effects highlight their suitability as optimal extracellular matrix proteins to incorporate into neurotrophic biomaterial scaffolds for the delivery of cell cargoes for neural repair.
Collapse
Affiliation(s)
- Cian O'Connor
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Rena E. Mullally
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Sarah F. McComish
- Department of Physiology, School of MedicineTCDDublinIreland
- Trinity College Institute of NeuroscienceTCDDublinIreland
| | - Julia O'Sullivan
- Department of Physiology, School of MedicineTCDDublinIreland
- Trinity College Institute of NeuroscienceTCDDublinIreland
| | - Ian Woods
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRCSIDublinIreland
| | - Massimiliano Garre
- Super‐Resolution Imaging ConsortiumDepartment of Chemistry RCSIDublinIreland
| | - Maeve A. Caldwell
- Department of Physiology, School of MedicineTCDDublinIreland
- Trinity College Institute of NeuroscienceTCDDublinIreland
| | - Adrian Dervan
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative MedicineRoyal College of Surgeons in Ireland (RCSI)DublinIreland
- Trinity Centre for Biomedical EngineeringTrinity College Dublin (TCD)DublinIreland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI & TCDDublinIreland
| |
Collapse
|
7
|
de Souza Araújo I, Perkins RS, Ibrahim MM, Huang GTJ, Zhang W. Bioprinting PDLSC-Laden Collagen Scaffolds for Periodontal Ligament Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59979-59990. [PMID: 39467547 PMCID: PMC11551894 DOI: 10.1021/acsami.4c13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Periodontitis and severe trauma are major causes of damage to the periodontal ligament (PDL). Repairing the native conditions of the PDL is essential for the stability of the tissue and its interfaces. Bioprinting periodontal ligament stem cells (PDLSCs) is an interesting approach to guide the regeneration of PDL and interfacial integration. Herein, a collagen-based bioink mimicking the native extracellular matrix conditions and carrying PDLSCs was tested to guide the periodontal ligament organization. The bioink was tested at two different concentrations (10 and 15 mg/mL) and characterized by swelling and degradation, microstructural organization, and rheological properties. The biological properties were assessed after loading PDLSCs into bioinks for bioprinting. The characterization was performed through cell viability, alizarin red assay, and expression for ALP, COL1A1, RUNX2, and OCN. The in vivo biocompatibility of the PDLSC-laden bioinks was verified using subcutaneous implantation in mice. Later, the ability of the bioprinted PDLSC-laden bioinks on dental root fragments to form PDL was also investigated in vivo in mice for 4 and 10 weeks. The bioinks demonstrated typical shear-thinning behavior, a porous microstructure, and stable swelling and degradation characteristics. Both concentrations were printable and provided suitable conditions for a high cell survival, proliferation, and differentiation. PDLSC-laden bioinks demonstrated biocompatibility in vivo, and the bioprinted scaffolds on the root surface evidenced PDLSC alignment, organization, and PDLSC migration to the root surface. The versatility of collagen-based bioinks provides native ECM conditions for PDLSC proliferation, alignment, organization, and differentiation, with translational applications in bioprinting scaffolds for PDL regeneration.
Collapse
Affiliation(s)
- Isaac
J. de Souza Araújo
- Department
of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rachel S. Perkins
- Department
of Orthopaedic Surgery and Biomedical Engineering, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mohamed Moustafa Ibrahim
- Department
of Ophthalmology, Hamilton Eye Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Pharmaceutics, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - George T.-J. Huang
- Department
of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Physiology, College of Medicine, University
of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department
of Endodontics, The University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
| | - Wenjing Zhang
- Department
of Genetics, Genomics & Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
8
|
Hosty L, Heatherington T, Quondamatteo F, Browne S. Extracellular matrix-inspired biomaterials for wound healing. Mol Biol Rep 2024; 51:830. [PMID: 39037470 PMCID: PMC11263448 DOI: 10.1007/s11033-024-09750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19-34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing.
Collapse
Affiliation(s)
- Louise Hosty
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Thomas Heatherington
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÙRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
9
|
Youn S, Ki MR, Abdelhamid MAA, Pack SP. Biomimetic Materials for Skin Tissue Regeneration and Electronic Skin. Biomimetics (Basel) 2024; 9:278. [PMID: 38786488 PMCID: PMC11117890 DOI: 10.3390/biomimetics9050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Biomimetic materials have become a promising alternative in the field of tissue engineering and regenerative medicine to address critical challenges in wound healing and skin regeneration. Skin-mimetic materials have enormous potential to improve wound healing outcomes and enable innovative diagnostic and sensor applications. Human skin, with its complex structure and diverse functions, serves as an excellent model for designing biomaterials. Creating effective wound coverings requires mimicking the unique extracellular matrix composition, mechanical properties, and biochemical cues. Additionally, integrating electronic functionality into these materials presents exciting possibilities for real-time monitoring, diagnostics, and personalized healthcare. This review examines biomimetic skin materials and their role in regenerative wound healing, as well as their integration with electronic skin technologies. It discusses recent advances, challenges, and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung-Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (S.Y.); (M.A.A.A.)
| |
Collapse
|
10
|
La Monica F, Campora S, Ghersi G. Collagen-Based Scaffolds for Chronic Skin Wound Treatment. Gels 2024; 10:137. [PMID: 38391467 PMCID: PMC10888252 DOI: 10.3390/gels10020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Chronic wounds, commonly known as ulcers, represent a significant challenge to public health, impacting millions of individuals every year and imposing a significant financial burden on the global health system. Chronic wounds result from the interruption of the natural wound-healing process due to internal and/or external factors, resulting in slow or nonexistent recovery. Conventional medical approaches are often inadequate to deal with chronic wounds, necessitating the exploration of new methods to facilitate rapid and effective healing. In recent years, regenerative medicine and tissue engineering have emerged as promising avenues to encourage tissue regeneration. These approaches aim to achieve anatomical and functional restoration of the affected area through polymeric components, such as scaffolds or hydrogels. This review explores collagen-based biomaterials as potential therapeutic interventions for skin chronic wounds, specifically focusing on infective and diabetic ulcers. Hence, the different approaches described are classified on an action-mechanism basis. Understanding the issues preventing chronic wound healing and identifying effective therapeutic alternatives could indicate the best way to optimize therapeutic units and to promote more direct and efficient healing.
Collapse
Affiliation(s)
- Francesco La Monica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
11
|
Browne S, Petit N, Quondamatteo F. Functionalised biomaterials as synthetic extracellular matrices to promote vascularisation and healing of diabetic wounds. Cell Tissue Res 2024; 395:133-145. [PMID: 38051351 DOI: 10.1007/s00441-023-03849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Diabetic foot ulcers (DFU) are a type of chronic wound that constitute one of the most serious and debilitating complications associated with diabetes. The lack of clinically efficacious treatments to treat these recalcitrant wounds can lead to amputations for those worst affected. Biomaterial-based approaches offer great hope in this regard, as they provide a template for cell infiltration and tissue repair. However, there is an additional need to treat the underlying pathophysiology of DFUs, in particular insufficient vascularization of the wound which significantly hampers healing. Thus, the addition of pro-angiogenic moieties to biomaterials is a promising strategy to promote the healing of DFUs and other chronic wounds. In this review, we discuss the potential of biomaterials as treatments for DFU and the approaches that can be taken to functionalise these biomaterials such that they promote vascularisation and wound healing in pre-clinical models.
Collapse
Affiliation(s)
- Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
- CÚRAM, Centre for Research in Medical Devices, University of Galway, H91 W2TY, Galway, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| | - Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Dublin, Ireland.
| |
Collapse
|
12
|
Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: Overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Deliv Rev 2023; 203:115120. [PMID: 37884128 DOI: 10.1016/j.addr.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment.
Collapse
Affiliation(s)
- Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Charlotte Thomsen
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shane Browne
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
13
|
Jiang P, Li Q, Luo Y, Luo F, Che Q, Lu Z, Yang S, Yang Y, Chen X, Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 2023; 14:1221705. [PMID: 37664860 PMCID: PMC10470649 DOI: 10.3389/fendo.2023.1221705] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated with a high risk of lower limb amputation and mortality. During their lifetime, 19%-34% of patients with diabetes can develop DFU. It is estimated that 61% of DFU become infected and 15% of those with DFU require amputation. Furthermore, developing a DFU increases the risk of mortality by 50%-68% at 5 years, higher than some cancers. Current standard management of DFU includes surgical debridement, the use of topical dressings and wound decompression, vascular assessment, and glycemic control. Among these methods, local treatment with dressings builds a protective physical barrier, maintains a moist environment, and drains the exudate from DFU wounds. This review summarizes the development, pathophysiology, and healing mechanisms of DFU. The latest research progress and the main application of dressings in laboratory and clinical stage are also summarized. The dressings discussed in this review include traditional dressings (gauze, oil yarn, traditional Chinese medicine, and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents, and others), bacteriostatic dressings, composite dressings (collagen, nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold dressings with stem cells, decellularized wound matrix, autologous platelet enrichment plasma, and others), and dressings that use modern technology (3D bioprinting, photothermal effects, bioelectric dressings, microneedle dressings, smart bandages, orthopedic prosthetics and regenerative medicine). The dressing management challenges and limitations are also summarized. The purpose of this review is to help readers understand the pathogenesis and healing mechanism of DFU, help physicians select dressings correctly, provide an updated overview of the potential of biomaterials and devices and their application in DFU management, and provide ideas for further exploration and development of dressings. Proper use of dressings can promote DFU healing, reduce the cost of treating DFU, and reduce patient pain.
Collapse
Affiliation(s)
- Pingnan Jiang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhong Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoyu Lu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuxiang Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Chen
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|