1
|
Ding J, Zhao P, Chen H. ZnO Nanostructure-Based Flexible Pressure Sensors Deposited on Filter Paper for Wearable Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40375571 DOI: 10.1021/acs.langmuir.5c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Flexible pressure sensors have broad prospects in smart wearables, healthcare, and human-computer interaction. Nevertheless, flexible pressure sensors still face numerous thorny challenges. It has become a crucial problem to skillfully design and successfully achieve flexible pressure sensors with both a high sensing range and ultrahigh sensitivity. The sensor is designed and realized with inspiration drawn from the layered microstructure of human skin, and hierarchical structure flexible pressure sensors are fabricated, where PDMS microstructures/MWCNTs act as the top electrode, filter paper/ZnO nanostructures/MWCNTs act as the intermediate active layer, and an Ag interdigitated electrode acts as the bottom electrode. The sensing performance of the sensor is investigated to develop the application of pressure sensors for human health detection in daily life, and a pressure sensor array is prepared to investigate the detection of spatial pressure distribution. Sensors based on paper and PDMS can achieve low-pressure detection (30 Pa), high sensitivity (261.38 kPa-1), fast response time (∼73.8 ms), and excellent cyclic stability (10 000 cycles). Finally, the sensor demonstrates its functionality by lighting up a small lamp, which confirms that the as-prepared pressure sensor has excellent application scenarios and is beneficial for the development of flexible electronic devices.
Collapse
Affiliation(s)
- Jijun Ding
- Shaanxi Engineering Research Centre of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Pengfei Zhao
- Shaanxi Engineering Research Centre of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| | - Haixia Chen
- Shaanxi Engineering Research Centre of Oil and Gas Resource Optical Fiber Detection, Shaanxi Key Laboratory of Measurement and Control Technology for Oil and Gas Wells, School of Science, Xi'an Shiyou University, Xi'an 710065, China
| |
Collapse
|
2
|
Wang X, Wu G, Zhang X, Lv F, Yang Z, Nan X, Zhang Z, Xue C, Cheng H, Gao L. Traditional Chinese Medicine (TCM)-Inspired Fully Printed Soft Pressure Sensor Array with Self-Adaptive Pressurization for Highly Reliable Individualized Long-Term Pulse Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410312. [PMID: 39344553 DOI: 10.1002/adma.202410312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Reliable, non-invasive, continuous monitoring of pulse and blood pressure is essential for the prevention and diagnosis of cardiovascular diseases. However, the pulse wave varies drastically among individuals or even over time in the same individual, presenting significant challenges for the existing pulse sensing systems. Inspired by pulse diagnosis methods in traditional Chinese medicine (TCM), this work reports a self-adaptive pressure sensing platform (PSP) that combines the fully printed flexible pressure sensor array with an adaptive wristband-style pressure system can identify the optimal pulse signal. Besides the detected pulse rate/width/length, "Cun, Guan, Chi" position, and "floating, moderate, sinking" pulse features, the PSP combined with a machine learning-based linear regression model can also accurately predict blood pressure such as systolic, diastolic, and mean arterial pressure values. The developed diagnostic platform is demonstrated for highly reliable long-term monitoring and analysis of pulse and blood pressure across multiple human subjects over time. The design concept and proof-of-the-concept demonstrations also pave the way for the future developments of flexible sensing devices/systems for adaptive individualized monitoring in the complex practical environments for personalized medicine, along with the support for the development of digital TCM.
Collapse
Affiliation(s)
- Xin Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
| | - Xikuan Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan, 030051, China
| | - Fei Lv
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan, 030051, China
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zengxing Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
3
|
Gao J, Zhao B, Chen X, Gu M, Zhang W, Wang L, Wei L, Yang C, Chen M. Harsh Environment-Tolerant, High Performance Soft Pressure Sensors Enabled by Fiber-Segment Structure and Plasma Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403495. [PMID: 39246203 DOI: 10.1002/smll.202403495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
As the demand for specialized and diversified pressure sensors continues to increase, excellent performance and multi-applicability have become necessary for pressure sensors. Currently, flexible pressure sensors are primarily utilized in fields such as health monitoring and human-computer interaction. However, numerous complex extreme environments in reality, including deep sea, corrosive conditions, extreme cold, and high temperatures, urgently require the services of flexible devices. Here, a piezoresistive flexible pressure sensor based on expanded polytetrafluoroethylene/functionalized carbon nanotubes (EPTFE/FCNT) is proposed. Benefiting from the unique fiber-segment architecture, chemical stability, and strong chemical binding force between EPTFE and FCNT, the fabricated sensor exhibits remarkable sensing capabilities and can be employed in multifarious extreme environments. It demonstrates a sensitivity of 862.28 kPa-1, a response time of 6-7 ms, and a detection limit below 1 Pa. Furthermore, it possesses a pressure resolution of 0.0018% under 111 kPa and can withstand over 10,000 loading and unloading cycles under 1 MPa. Additionally, the EPTFE/FCNT sensor retains its outstanding pressure response and work efficiency in extreme conditions such as an ultra-low temperature of -80 °C, high temperature (200 °C), acidic and alkaline corrosion, and underwater. These notable attributes enormously broaden the sensors' real-world application range.
Collapse
Affiliation(s)
- Junxue Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Nano Science and Technology, University of Science and Technology of China, Suzhou, 215000, P. R. China
| | - Binzhe Zhao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xi Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengxi Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenli Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Nano Science and Technology, University of Science and Technology of China, Suzhou, 215000, P. R. China
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Huang J, Xie G, Xu X, Geng Z, Su Y. Degradable Multilayer Fabric Sensor with Wide Detection Range and High Linearity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58838-58847. [PMID: 39425644 DOI: 10.1021/acsami.4c12066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Integration of multiple superior features into a single flexible pressure sensor would result in devices with greater versatility and utility. To apply the device to a variety of scenarios and solve the problem of accumulation of e-waste in the environment, it is highly desirable to combine degradability and wide-range linearity characteristics in a single device. Herein, we reported a degradable multilayer fabric (DMF) consisting of an ellipsoidal carbon nanotube (ECNT) and polyvinylpyrrolidone/cellulose acetate electrospun fibers (PEF). The alternative layer-by-layer stacking of the ECNT and PEF notably accelerates the sensitivity toward pressure. The optimized device demonstrated a sensitivity of 3.38 kPa-1 over a wide measurement range from 0.1 to 500 kPa, as well as great mechanical stability over 2000 cycles. A good degradation performance was confirmed by both Fourier transform infrared (FTIR) characterization and decomposition experiments in sodium hydroxide solution. The fabricated sensor is capable of precepting a variety of physiological scenarios including subtle arterial pulse, dancing training, walking postures, and accidental falls. This work throws light onto the fundamental understanding of the mechanical interfacial coupling in piezoresistive materials and provides possibilities for the design and development of on-demand wearable electronics.
Collapse
Affiliation(s)
- Junlong Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Xiangdong Xu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zhenya Geng
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
5
|
Zheng B, Guo R, Dou X, Fu Y, Yang B, Liu X, Zhou F. Blade-Coated Porous 3D Carbon Composite Electrodes Coupled with Multiscale Interfaces for Highly Sensitive All-Paper Pressure Sensors. NANO-MICRO LETTERS 2024; 16:267. [PMID: 39134809 PMCID: PMC11319548 DOI: 10.1007/s40820-024-01488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
Flexible and wearable pressure sensors hold immense promise for health monitoring, covering disease detection and postoperative rehabilitation. Developing pressure sensors with high sensitivity, wide detection range, and cost-effectiveness is paramount. By leveraging paper for its sustainability, biocompatibility, and inherent porous structure, herein, a solution-processed all-paper resistive pressure sensor is designed with outstanding performance. A ternary composite paste, comprising a compressible 3D carbon skeleton, conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), and cohesive carbon nanotubes, is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro- and nano-structured surface. Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper, this creates a multiscale hierarchical contact interface between electrodes, significantly enhancing sensitivity (1014 kPa-1) and expanding the detection range (up to 300 kPa) of as-resulted all-paper pressure sensor with low detection limit and power consumption. Its versatility ranges from subtle wrist pulses, robust finger taps, to large-area spatial force detection, highlighting its intricate submillimeter-micrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode. Ultimately, this all-paper resistive pressure sensor, with its superior sensing capabilities, large-scale fabrication potential, and cost-effectiveness, paves the way for next-generation wearable electronics, ushering in an era of advanced, sustainable technological solutions.
Collapse
Affiliation(s)
- Bowen Zheng
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Xiaoqiang Dou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yueqing Fu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Bingjun Yang
- Research Center of Resource Chemistry and Energy Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese of Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| | - Xuqing Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| |
Collapse
|
6
|
Teng Y, Wang X, Zhang Z, Mei S, Nan X, Zhao Y, Zhang X, Xue C, Gao L, Li J. Fully printed minimum port flexible interdigital electrode sensor arrays. NANOSCALE 2024; 16:7427-7436. [PMID: 38525943 DOI: 10.1039/d3nr06664a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Screen-printed interdigital electrode-based flexible pressure sensor arrays play a crucial role in human-computer interaction and health monitoring due to their simplicity of fabrication. However, the long-standing challenge of how to reduce the number of electrical output ports of interdigital electrodes to facilitate integration with back-end circuits is still commonly ignored. Here, we propose a screen-printing strategy to avoid wire cross-planes for rapid fabrication of flexible pressure sensor arrays. By innovatively introducing an insulating ink to realize electrical insulation and three-dimensional interconnection of wire crossings, the improved sensor array (4 × 4) successfully reduces the number of output ports from 17 to 8. In addition, we further constructed microstructures on the laser-etched electrode surfaces and the sensitive layer, which enabled the sensor to achieve a sensitivity as high as 17 567.5 kPa-1 in the range of 0-50 kPa. Moreover, we integrated the sensors with back-end circuits for the precise detection of tactile and physiological information. This provides a reliable method for preparing high-performance flexible sensor arrays and large-scale integration of microsensors.
Collapse
Affiliation(s)
- Yanyue Teng
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China.
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China.
| | - Zhidong Zhang
- State Key Laboratory, of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Shixuan Mei
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China.
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China.
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China.
| | - Xikuan Zhang
- State Key Laboratory, of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China.
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China.
| | - Junyang Li
- School of Electronic Engineering, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
7
|
Wang H, Dou X, Wang Z, Liu Z, Ye Q, Guo R, Zhou F. Boosting Sensitivity and Durability of Pressure Sensors Based on Compressible Cu Sponges by Strengthening Adhesion of "Rigid-Soft" Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303234. [PMID: 37501331 DOI: 10.1002/smll.202303234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Indexed: 07/29/2023]
Abstract
The interface adhesion plays a key role between rigid metal and elastomer in compressible and stretchable conductors. However, the poor interfacial adhesion hinders their wide applications. To strengthen the interface adhesion, herein, a combination strategy of structure interlocking and polymer bridging is designed by introducing a method of subsurface-initiated atom transfer radical polymerization (sSI-ATRP). This method can make polymer brush root in polydimethylsiloxane (PDMS) subsurface, on this basis, metals further grow from subsurface to surface of PDMS via electroless deposition. As a result, the adhesive strength (≈2.5 MPa) between metal layer and PDMS elastomer is 4 times higher than that made by common polymer modification. As a demonstration, pressure sensor is constructed by using as-prepared compressible 3D Cu sponge as a top electrode and paper-based interdigited metal electrode as a bottom electrode. The device sensitivity can reach up to 961.2 kPa-1 and the durability can arrive at 3 000 cycles without degradation. Thus, this proposed interface-enhancement strategy for rigid-soft materials can significantly promote the performance of piezoresistive pressure sensors based on 3D conductive sponge. In the future, it would also be expanded to the fabrication of stretchable conductors and extensively applied in other flexible and wearable electronics.
Collapse
Affiliation(s)
- Haoran Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoqiang Dou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zheng Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zihan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
| | - Feng Zhou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, 264006, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese of Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
8
|
Dou X, Wang H, Liu Z, Zheng B, Zheng Z, Liu X, Guo R. Epoxy Resin-Assisted Cu Catalytic Printing for Flexible Cu Conductors on Smooth and Rough Substrates. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37874909 DOI: 10.1021/acsami.3c11011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Flexible copper conductors have been extensively utilized in flexible and wearable electronics. They can be fabricated by using a variety of patterning techniques such as vacuum deposition, photolithography, and various printing techniques. However, vacuum deposition and photolithography are costly and result in material wastage. Moreover, traditional printing inks require posttreatment, which can damage flexible substrates, or grafting polymers, which involve complex processes to adhere to flexible substrates. Therefore, this study proposes a facile method of fabricating flexible metal patterns with high electrical conductivities and remarkable bonding forces on a diverse range of flexible substrates. Catalytic ink was prepared by using a mixture of epoxy resin, copper nanopowder, and nanosilica. The ink was applied to a variety of flexible substrates, including a poly(ethylene terephthalate) (PET) film, polyimide film, and filter paper, using screen printing to establish a bridge layer for subsequent electroless deposition (ELD). The catalytic efficiency was significantly improved by treating the cured ink patterns with air plasma. The fabricated flexible metals exhibited excellent adhesion and desirable electrical conductivity. The sheet resistance of the copper layer on the PET substrate decreased to 9.2 mΩ/□ after 150 min of ELD. The resistance of the flexible metal on the PET substrate increased by only 3.125% after 5000 bending cycles. The flexible metals prepared in this study demonstrated good foldability, and the samples with filter paper and PET substrates failed after 40 and 70 folds, respectively. A pressure sensor with a bottom electrode consisting of a copper interdigital electrode on a PET substrate displayed favorable sensing performance.
Collapse
Affiliation(s)
- Xiaoqiang Dou
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haoran Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zihan Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bowen Zheng
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 99077, China
| | - Xuqing Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| |
Collapse
|