1
|
Li T, Sun W, Qian D, Wang P, Liu X, He C, Chang T, Liao G, Zhang J. Plant-derived biomass-based hydrogels for biomedical applications. Trends Biotechnol 2025; 43:802-811. [PMID: 39384469 DOI: 10.1016/j.tibtech.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Hydrogels made of plant-derived biomass have gained popularity in biomedical applications because they are frequently affordable, readily available, and biocompatible. Finding the perfect plant-derived biomass-based hydrogels for biomedicine that can replicate essential characteristics of human tissues in regard to structure, function, and performance has proved to be difficult. In this review, we summarize some of the major contributions made to this topic, covering basic ideas and different biomass-based hydrogels made of cellulose, hemicellulose, and lignin. Also included is an in-depth discussion regarding the biosafety and toxicity assessments of biomass-based hydrogels. Finally, this review also highlights important scientific debates and major obstacles regarding biomass-based hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Tushuai Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Wenxue Sun
- Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Translational Pharmaceutical Laboratory, Jining No.1 People's Hospital, Shandong First Medical University, Jining 272000, China; Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Suzhou 215500, China
| | - Peng Wang
- Shandong Chambroad Petrochemicals Co., Ltd, Binzhou, Shandong 256500, China
| | - Xingyu Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Chengsheng He
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Tong Chang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China.
| |
Collapse
|
2
|
Panda SR, S VP, Karmakar A, Koner AL. Crafting nature's wonders: nanoarchitectonics developments in bioinspired nanocellulose-based stimuli-responsive supramolecular matrices. J Mater Chem B 2025; 13:1195-1211. [PMID: 39686862 DOI: 10.1039/d4tb01814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Stimuli-responsive supramolecular assemblies have recently gained extensive attention in the biomedical field. Research focusing mainly on bioinspired functional supramolecular materials has shown great promise for potential drug delivery applications. Such materials can be engineered into 'smart' materials by utilizing various external stimuli such as pH, heat, light, and magnetic fields. Combining stimuli-responsive properties with bioinspired and biodegradable nanocellulose as a supramolecular matrix can offer a synergistic strategy for targeted and on-demand delivery of therapeutic drugs. The limitations of traditional drug delivery techniques may be greatly mitigated using this combination. In this review, we aim to provide a comprehensive overview of the recent advances in the development of stimuli-responsive nanocellulose-based drug delivery systems. Finally, we have highlighted the current challenges and future perspectives in the field, emphasizing the need for further research to overcome existing barriers and fully realize the potential of stimuli-responsive nanocellulose in drug-releasing applications. Reviewing the state-of-the-art developments and identifying critical areas for future exploration will provide valuable insights for researchers and practitioners working in nanomedicine and drug delivery, fostering the advancement of innovative and effective drug-releasing technologies.
Collapse
Affiliation(s)
- Soumya Ranjan Panda
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Vaishakh Prasad S
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
3
|
Mao L, Li G, Zhang B, Wen K, Wang C, Cai Q, Zhao X, Guo Z, Zhang S. Functional Hydrogels for Aqueous Zinc-Based Batteries: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416345. [PMID: 39659112 DOI: 10.1002/adma.202416345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Aqueous zinc batteries (AZBs) hold great potential for green grid-scale energy storage due to their affordability, resource abundance, safety, and environmental friendliness. However, their practical deployment is hindered by challenges related to the electrode, electrolyte, and interface. Functional hydrogels offer a promising solution to address such challenges owing to their broad electrochemical window, tunable structures, and pressure-responsive mechanical properties. In this review, the key properties that functional hydrogels must possess for advancing AZBs, including mechanical strength, ionic conductivity, swelling behavior, and degradability, from a perspective of the full life cycle of hydrogels in AZBs are summarized. Current modification strategies aimed at enhancing these properties and improving AZB performance are also explored. The challenges and design considerations for integrating functional hydrogels with electrodes and interface are discussed. In the end, the limitations and future directions for hydrogels to bridge the gap between academia and industries for the successful deployment of AZBs are discussed.
Collapse
Affiliation(s)
- Lei Mao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Guanjie Li
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Binwei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaihua Wen
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Wang
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Qinqin Cai
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xun Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shilin Zhang
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Zhang Z, Zhang Z, Zeng W, Li Y, Zhu C. A hyaluronic acid-based dual-functional hydrogel microneedle system for sequential melanoma ablation and skin regeneration. Int J Biol Macromol 2024; 283:138039. [PMID: 39592053 DOI: 10.1016/j.ijbiomac.2024.138039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Melanoma treatment remains a challenge due to the inadequacy of existing clinical approaches and the difficulty of tissue regeneration. Recently, microneedles have been widely studied in tumor therapy and skin repair. Hence, a hyaluronic acid (HA)-based dual-functional hydrogel microneedle (MN) system was constructed to sequentially achieve tumor ablation and skin regeneration. Carbon nanotubes@calcium peroxide@tannic acid-Fe/chlorin e6 (CCa@TF/Ce6) nanomaterial was encapsulated in dissolvable polyvinyl alcohol/polyvinylpyrrolidone tips and accurately released to the tumor site to suppress melanoma via the photothermal and photodynamic therapies under the dual laser irradiation due to the generation of reactive oxygen species (ROS) and heat. Particularly, ROS and heat triggered immunogenic cell death, promoted dendritic cells maturation and reshaped the tumor-associated macrophage phenotype from the protumor M2 phenotype to the anti-tumor M1 phenotype, ultimately activating autoimmunity to eliminate the tumor. Following tumor ablation, the MN base accelerated skin regeneration owing to HB-PVA hydrogel through reducing oxidative stress, promoting cell proliferation and facilitating cell migration. Overall, the dual-functional hydrogel MN designed in this study, offers a new avenue for sequential melanoma combination treatment and skin regeneration.
Collapse
Affiliation(s)
- Zixuan Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Zhuo Zhang
- Plastic and Cosmetic Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710065, China
| | - Wen Zeng
- Honghui Hospital, Xi' an Jiaotong University, 710054, China
| | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Liu Y, Wang S, Liang J, Lu L, Xie Y, Qin C, Liang C, Huang C, Yao S. Optimizing lignin demethylation using a novel proton- based ionic liquid: 1, 2-propanediamine/glycolic acid catalyst. Int J Biol Macromol 2024; 279:135172. [PMID: 39208526 DOI: 10.1016/j.ijbiomac.2024.135172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Demethylation modification of lignin is an effective strategy to overcome the barrier to its high-value conversion. The purpose of this study focuses on the new proton-based ionic liquid (PIL) 1, 2-propanediamine/glycolic acid (PD/GA) as a catalyst and solvent to achieve the targeted oxidation of lignin. The PD/GA solvents have higher selectivity and efficiency. Optimal phenolic hydroxyl (PH)-increment was achieved, demonstrating enhanced demethylating effect on lignin by modulating the acid-base molar ratio, reaction temperature, and reaction time. Compared to ethanolamine/acetic acid (CE/AC) treatment, the PD/GA treatment at molar ratio 1.25, temperature 60 °C, and 3 h increased the PH-content from 37.74 to 59.91 %. Additionally, the lignin treated with PD/GA exhibited excellent recyclability, featuring a larger Brunauer-Emmett-Teller surface area (1.45 m2.g-1), total pore volume (9.51*10-3 cm3.g-1), and mesoporous size (26.15 nm). The treated lignin yielded maximum ultraviolet resistance and antioxidant activity. These results present new avenues for the development of green and efficient lignin demethylation methods.
Collapse
Affiliation(s)
- Yi Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shaoyan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Jiarui Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lirong Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yi Xie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
He Y, Liu Y, Zhang M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int J Biol Macromol 2024; 280:135657. [PMID: 39299428 DOI: 10.1016/j.ijbiomac.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hemicellulose, a complex polysaccharide abundantly found in plant cell walls, has garnered significant attention for its versatile applications in various fields including biomedical, food packaging, environmental, and material sciences. This review systematically explores the composition, extraction methods, and diverse applications of hemicellulose-derived materials. Various extraction techniques such as organic acid, organic base, enzyme-assisted, and hydrothermal methods are discussed in detail, highlighting their efficacy and potential drawbacks. The applications of hemicellulose encompass biodegradable films, edible coatings, advanced hydrogels, and emulsion stabilizers, each offering unique properties suitable for different industrial needs. Current challenges in hemicellulose research include extraction efficiency, scalability of production processes, and optimization of material properties. Opportunities for future research are outlined, emphasizing the exploration of new applications and interdisciplinary approaches to harness the full potential of hemicellulose. This comprehensive review aims to provide valuable insights for researchers and industry professionals interested in utilizing hemicellulose as a sustainable and functional biomaterial.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, 100125 Beijing, China
| |
Collapse
|
7
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
8
|
Le TA, Huynh TP. Hemicellulose-Based Sensors: When Sustainability Meets Complexity. ACS Sens 2024; 9:4975-5001. [PMID: 39344466 DOI: 10.1021/acssensors.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hemicelluloses (HCs) are promising sustainable biopolymers with a great natural abundance, excellent biocompatibility, and biodegradability. Yet, their potential sensing applications remain limited due to intrinsic challenges in their heterogeneous chemical composition, structure, and physicochemical properties. Herein, recent advances in the development of HC-based sensors for different chemical analytes and physical stimuli using different transduction mechanisms are reviewed and discussed. HCs can be utilized as carbonaceous precursors, reducing, capping, and stabilizing agents, binders, and active components for sensing applications. In addition, different strategies to develop and improve the sensing capacity of HC-based sensors are also highlighted.
Collapse
Affiliation(s)
- Trung-Anh Le
- Department of Chemistry, Faculty of Science, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Tan-Phat Huynh
- Laboratory of Molecular Sciences and Engineering, Åbo Akademi University, Henrikinkatu 2, 20500 Turku, Finland
| |
Collapse
|
9
|
Ge Z, Guo W, Tao Y, Li S, Li X, Liu W, Meng X, Yang R, Xue R, Ren Y. Ambient Moisture-Driven Self-Powered Iontophoresis Patch for Enhanced Transdermal Drug Delivery. Adv Healthc Mater 2024; 13:e2401371. [PMID: 38994663 DOI: 10.1002/adhm.202401371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Iontophoretic transdermal drug delivery (TDD) devices are known to enhance the transdermal transport of drugs. However, conventional transdermal iontophoretic devices require external power sources, wired connections, or mechanical parts, which reduce the comfort level for patients during extended use. In this work, a self-powered, wearable transdermal iontophoretic patch (TIP) is proposed by harvesting ambient humidity for energy generation, enabling controlled TDD. This patch primarily uses moist-electric generators (MEGs) as its power source, thus obviating the need for complex power management modules and mechanical components. A single MEG unit can produce an open-circuit voltage of 0.80 V and a short-circuit current of 11.65 µA under the condition of 80% relative humidity. Amplification of the electrical output is feasible by connecting multiple generator units in series and parallel, facilitating the powering of certain commercial electronic devices. Subsequently, the MEG array is integrated with the TDD circuit to create the wearable TIP. After 20 min of application, the depth of drug penetration through the skin is observed to increase threefold. The effective promotion effect of TIP on the transdermal delivery of ionized drugs is corroborated by simulations and experiments. This wearable TIP offers a simple, noninvasive solution for TDD.
Collapse
Affiliation(s)
- Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shixin Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiao Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Weiyu Liu
- School of Electronics and Control Engineering, Chang'an University, Xi'an, 710064, China
| | - Xiangyu Meng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ruizhe Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
10
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
12
|
Ara L, Sher M, Khan M, Rehman TU, Shah LA, Yoo HM. Dually-crosslinked ionic conductive hydrogels reinforced through biopolymer gellan gum for flexible sensors to monitor human activities. Int J Biol Macromol 2024; 276:133789. [PMID: 38992556 DOI: 10.1016/j.ijbiomac.2024.133789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Human-machine interactions, monitoring of health equipment, and gentle robots all depend considerably on flexible strain sensors. However, making strain sensors have better mechanical behavior and an extensive sensing range remains an urgent difficulty. In this study, poly acrylamide-co-butyl acrylate with gellan gum (poly(AAm-co-BA)@GG) hydrophobic association networks and intermolecular hydrogen bonding interactions are used to fabricate dual cross-linked hydrogels for wearable resistive-type strain sensors. This could be an acceptable way to minimize the limitations in hydrogels previously identified. The robust fracture strength (870 kPa) and exceptional stretchability (1297 %) of the hydrogel arise from the collaborative action of intermolecular hydrogen bonding and hydrophobic associations. It also demonstrates exceptional resilience to repeated cycles of uninterrupted stretching and relaxation, retaining its structural integrity. The response and restoration times are 110 and 120 ms respectively. Furthermore, a wide sensing range (0-900 %), notable sensitivity across various strain levels, and an impressive gauge factor (GF) of 31.51 with high durability were observed by the dual cross-linked (DC) hydrogel-based strain sensors. The measured conductivity of the hydrogel was 0.32 S/m which is due to the incorporation of NaCl. Therefore, the hydrogels can be tailored to function as wearable strain sensors that can detect subtle human gestures like speech patterns, distinguish between distinct words, and recognize vibrations of the larynx during drinking, as well as large joint motions like wrist, finger, and elbow. Furthermore, these hydrogels are capable of reliably distinguishing and reproducing various printed text. These findings imply that any electronic device that demands strain-sensing functionality might make use of these developed materials.
Collapse
Affiliation(s)
- Latafat Ara
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Sher
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Mansoor Khan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Tanzil Ur Rehman
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan.
| | - Hyeong-Min Yoo
- School of Mechanical Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, Republic of Korea
| |
Collapse
|
13
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
14
|
Hou Z, Zhou T, Bai L, Wang W, Chen H, Yang L, Yang H, Wei D. Design of Cellulose Nanocrystal-Based Self-Healing Nanocomposite Hydrogels and Application in Motion Sensing and Sweat Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37087-37099. [PMID: 38958653 DOI: 10.1021/acsami.4c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hydrogels, as flexible materials, have been widely used in the field of flexible sensors. Human sweat contains a variety of biomarkers that can reflect the physiological state of the human body. Therefore, it is of great practical significance and application value to realize the detection of sweat composition and combine it with human motion sensing through a hydrogel. Based on mussel-inspired chemistry, polydopamine (PDA) and gold nanoparticles (AuNPs) were coated on the surface of cellulose nanocrystals (CNCs) to obtain CNC-based nanocomposites (CNCs@PDA-Au), which could simultaneously enhance the mechanical, electrochemical, and self-healing properties of hydrogels. The CNCs@PDA-Au was composited with poly(vinyl alcohol) (PVA) hydrogel to obtain the nanocomposite hydrogel (PVA/CNCs@PDA-Au) by freeze-thaw cycles. The PVA/CNCs@PDA-Au has excellent mechanical strength (7.2 MPa) and self-healing properties (88.3%). The motion sensors designed with PVA/CNCs@PDA-Au exhibited a fast response time (122.9 ms), wide strain sensing range (0-600.0%), excellent stability, and fatigue resistance. With the unique electrochemical redox properties of uric acid, the designed hydrogel sensor successfully realized the detection of uric acid in sweat with a wide detection range (1.0-100.0 μmol/L) and low detection limit (0.42 μmol/L). In this study, the dual detection of human motion and uric acid in sweat was successfully realized by the designed PVA/CNCs@PDA-Au nanocomposite hydrogel.
Collapse
Affiliation(s)
- Zehua Hou
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tianjun Zhou
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Baoyuan Biotechnology Co., Ltd., Yantai 264006, China
| | - Wenxiang Wang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
15
|
Du F, Ma A, Wang W, Bai L, Chen H, Wei D, Yin K, Yang L, Yang H. Phytic Acid-Functional Cellulose Nanocrystals and Their Application in Self-Healing Nanocomposite Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14602-14612. [PMID: 38963442 DOI: 10.1021/acs.langmuir.4c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cellulose nanocrystals (CNCs) have garnered significant attention as a modifiable substrate because of their exceptional performances, including remarkable degradability, high tensile strength, high elastic modulus, and biocompatibility. In this article, the successful adsorption of phytic acid (PA) onto the surface of cellulose nanocrystals @polydopamine (CNC@PDA) was achieved. Taking inspiration from mussels, a dopamine self-polymerization reaction was employed to coat the surface of CNCs with PDA. Utilizing Pickering emulsion, the CNC@PDA-PA nanomaterial was obtained by grafting PA onto CNC@PDA. An environmentally friendly hydrogel was prepared through various reversible interactions using poly(acrylic acid) (PAA) and Fe3+ as raw materials with the assistance of CNC@PDA-PA. By multiple hydrogen bonding and metal-ligand coordination, nanocomposite hydrogels exhibit remarkable mechanical properties (the tensile strength and strain were 1.82 MPa and 442.1%, respectively) in addition to spectacular healing abilities (96.6% after 5 h). The study aimed to develop an innovative approach for fabricating nanocomposite hydrogels with exceptional self-healing capabilities.
Collapse
Affiliation(s)
- Fashuo Du
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Anyao Ma
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Kun Yin
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| |
Collapse
|
16
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
17
|
Meng X, Qi L, Xia C, Jin X, Zhou J, Dong A, Li J, Yang R. Preparation of environmentally friendly, high strength, adhesion and stability hydrogel based on lignocellulose framework. Int J Biol Macromol 2024; 263:130158. [PMID: 38368986 DOI: 10.1016/j.ijbiomac.2024.130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Hydrogels are extensively utilized in the fields of electronic skin, environmental monitoring, biological dressings due to their excellent flexibility and conductivity. However, traditional hydrogel materials possess drawbacks such as environmental toxicity, low strength, poor stability, and water loss deactivation, which limited its frequent applications. Here, a flexible conductive hydrogel called wood-based DES hydrogel (WDH) with high strength, high adhesion, high stability, and high sensitivity was successfully synthesized by using environmentally friendly lignocellulose as skeleton and deep eutectic solvent as matrix. The strength of WDH prepared from lignocellulose framework is approximately 50 times higher than poly deep eutectic solvent hydrogel, and about 4.5 times higher than that prepared from cellulose skeleton. The WDH exhibits stable adhesion to most common materials and demonstrates exceptional dimensional stability. Its conductivity remains unaffected by water, even after prolonged exposure to air, maintaining a value of 0.0245 S/m. The anisotropy inherent in the system results in three distinct linear sensing intervals for WDH, exhibiting a maximum sensitivity of 5.45. This paper verified the advantages of lignocellulose framework in improving the strength and stability of hydrogels, which provided a new strategy for the development of sensor materials.
Collapse
Affiliation(s)
- Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linghui Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
18
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
19
|
Lin Y, Zhang Y, Cai X, He H, Yang C, Ban J, Guo B. Design and Self-Assembly of Peptide-Copolymer Conjugates into Nanoparticle Hydrogel for Wound Healing in Diabetes. Int J Nanomedicine 2024; 19:2487-2506. [PMID: 38486937 PMCID: PMC10938256 DOI: 10.2147/ijn.s452915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
Background Delayed wound healing in skin injuries has become a significant problem in clinics, seriously affecting and even threatening life and health. Recently, research interest has increased in developing wound dressings containing bioactive compounds capable of improving outcomes for complex healing needs. Methods In this study, Puerarin-loaded nanoparticles (Pue-NPs) were prepared using the cell-penetrating peptide-poly (lactic-co-glycolic acid) (CPP-PLGA) as a drug carrier by the emulsified solvent evaporation method. Then, they were added into poly (acrylic acid) to obtain a self-assembled nanocomposite hydrogels (SANHs) drug delivery system using the co-polymerization method. The particle size, zeta potential, and micromorphology of Pue-NPs were measured; the appearance, mechanical properties, adhesive strength, and biological activity of SANHs were performed. Finally, the potential of SANHs for wound healing was further evaluated in streptozotocin-induced diabetic mice. Results Pue-NPs were regularly spherical, with an average particle size of 134.57 ± 1.42 nm and a zeta potential of 2.14 ± 0.78 mV. SANHs was colorless and transparent with a honeycomb-like porous structure and had an excellent swelling ratio (917%), water vapor transmission rate (3077 g·m-2·day-1), mechanical properties (Young's modulus of 18 kPa, elongation at break of 307%), and adhesive strength (15.5 kPa). SANHs exhibited sustained release of Pue over 48h, with a cumulative release of 55.60 ± 6.01%. In vitro tests revealed that the SANHs presented a 92.22% antibacterial rate against Escherichia coli after 4h, and a 61.91% scavenging rate of 1.1-diphenyl-2-trinitrophenylhydrazine (DPPH) radical. In vivo experiments showed that SANHs accelerated wound repair by reducing the inflammatory response at the wound site, promoting angiogenesis, and facilitating epidermal regeneration and collagen deposition. Conclusion In conclusion, we successfully prepared SANHs. Our results show that SANHs have excellent performance and improves wound healing in diabetic mice model, indicating that it can be used to develop an effective strategy for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yiling Lin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yingneng Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Xia Cai
- Guangdong Institute for Drug Control, Guangzhou, People’s Republic of China
| | - Huashen He
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chuangzan Yang
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Junfeng Ban
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Bohong Guo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
20
|
Zhu J, Xu H, Hu Q, Yang Y, Ni S, Peng F, Jin X. High stretchable and tough xylan-g-gelatin hydrogel via the synergy of chemical cross-linking and salting out for strain sensors. Int J Biol Macromol 2024; 261:129759. [PMID: 38281523 DOI: 10.1016/j.ijbiomac.2024.129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Stretchable and tough hydrogels have been extensively used in tissue engineering scaffolds and flexible electronics. However, it is still a significant challenge to prepare hydrogels with both tensile strength and toughness by utilizing xylan, which is abundant in nature. Herein, we present a novel hydrogel of carboxymethyl xylan(CMX) graft gelatin (G) and doped with conductive hydroxyl carbon nanotubes (OCNT). CMX and G are combined through amide bonding as well as intermolecular hydrogen bonding to form a semi-interpenetrating hydrogel network. The hydrogel was further subjected to salting-out treatment, which induced the aggregation of the CMX-g-G molecular chain and the formation of chain bundles to toughen the hydrogel, the tensile strain, tensile stress, and toughness of CMX-g-G hydrogels were 1.547 MPa, 324 %, and 2.31 MJ m-3, respectively. In addition, OCNT was used as a conductive filler to impart electrical conductivity and further improve the mechanical properties of CMX-g-G/OCNT hydrogel, and a tensile strength of 1.62 MPa was obtained. Thus, the synthesized CMX-g-G/OCNT hydrogel can be used as a reliable and sensitive strain sensor for monitoring human activity. This study opens up new horizons for the preparation of xylan-based high-performance hydrogels.
Collapse
Affiliation(s)
- Jingqiao Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hanping Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Qiangli Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yujia Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Siyang Ni
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Jin
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Wu Y, Lin Y, Chen Y, Fan H, Zhang J, Li J, Lin W, Yi G, Feng X. Adhesive polydopamine-based photothermal hybrid hydrogel for on-demand lidocaine delivery, effective anti-bacteria, and prolonged local long-lasting analgesia. Int J Biol Macromol 2024; 259:129266. [PMID: 38199532 DOI: 10.1016/j.ijbiomac.2024.129266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Considering the astonishing prevalence of localized pain affecting billions of patients worldwide, the development of advanced analgesic formulations or delivery systems to achieve clinical applicability is of great significance. In this study, an integrated PDA-based LiH@PDA@Ag@PAA@Gelatin system was designed for sustained delivery of lidocaine hydrochloride (LiH). By optimizing the preparation process and formulation of the hydrogel, the hydrogel exhibited superior mechanical properties, reversibility, adhesion strength, and self-healing attributes. Moreover, PDA@Ag nanoparticles were evenly dispersed within the hydrogel, and the optimized PDA@Ag@PAA@Gelatin showed a higher photothermal conversion efficiency than that of pure PDA. Importantly, LiH@PDA@Ag@PAA@Gelatin could effectively capture and eradicate bacteria through the synergistic interaction between near-infrared (NIR), PDA, Ag and LiH. In vitro and in vivo tests demonstrated that LiH@PDA@Ag@PAA@Gelatin exhibited higher drug delivery efficiency compared to commercial lidocaine patches. By evaluating the mechanical pain withdrawal threshold of the spared nerve injury (SNI) model in rats, it was proven that LiH@PDA@Ag@PAA@Gelatin enhanced and prolonged the analgesic effect of LiH. Furthermore, LiH@PDA@Ag@PAA@Gelatin induced by NIR possessed excellent on-demand photothermal analgesic ability. Therefore, this study develops a convenient method for preparing localized analgesic hydrogel patches, providing an important step towards advancing PDA-based on-demand pain relief applications.
Collapse
Affiliation(s)
- Yan Wu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yibin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiting Fan
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jieheng Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xia Feng
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
22
|
Li Y, Han Y, Li H, Niu X, Zhang D, Wang K. Antimicrobial Hydrogels: Potential Materials for Medical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304047. [PMID: 37752779 DOI: 10.1002/smll.202304047] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Microbial infections based on drug-resistant pathogenic organisms following surgery or trauma and uncontrolled bleeding are the main causes of increased mortality from trauma worldwide. The prevalence of drug-resistant pathogens has led to a significant increase in medical costs and poses a great threat to the normal life of people. This is an important issue in the field of biomedicine, and the emergence of new antimicrobial materials hydrogels holds great promise for solving this problem. Hydrogel is an important material with good biocompatibility, water absorption, oxygen permeability, adhesion, degradation, self-healing, corrosion resistance, and controlled release of drugs as well as structural diversity. Bacteria-disturbing hydrogels have important applications in the direction of surgical treatment, wound dressing, medical device coating, and tissue engineering. This paper reviews the classification of antimicrobial hydrogels, the current status of research, and the potential of antimicrobial hydrogels for one application in biomedicine, and analyzes the current research of hydrogels in biomedical applications from five aspects: metal-loaded hydrogels, drug-loaded hydrogels, carbon-material-loaded hydrogels, hydrogels with fixed antimicrobial activity and biological antimicrobial hydrogels, and provides an outlook on the high antimicrobial activity, biodegradability, biocompatibility, injectability, clinical applicability and future development prospects of hydrogels in this field.
Collapse
Affiliation(s)
- Yanni Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
23
|
Zhao R, Zhao Z, Song S, Wang Y. Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59854-59865. [PMID: 38095585 DOI: 10.1021/acsami.3c15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
As typical soft materials, hydrogels have demonstrated great potential for the fabrication of flexible sensors due to their highly compatible elastic modulus with human skin, prominent flexibility, and biocompatible three-dimensional network structure. However, the practical application of wearable hydrogel sensors is significantly constrained because of weak adhesion, limited stretchability, and poor self-healing properties of traditional hydrogels. Herein, a multifunctional sodium hyaluronate (SH)/borax (B)/gelatin (G) double-cross-linked conductive hydrogel (SBG) was designed and constructed through a simple one-pot blending strategy with SH and gelatin as the gel matrix and borax as the dynamic cross-linker. The obtained SBG hydrogels exhibited a moderate tensile strength of 25.3 kPa at a large elongation of 760%, high interfacial toughness (106.5 kJ m-3), strong adhesion (28 kPa to paper), and satisfactory conductivity (224.5 mS/m). In particular, the dynamic cross-linking between SH, gelatin, and borax via borate ester bonds and hydrogen bonds between SH and gelatin chain endowed the SBG hydrogels with good fatigue resistance (>300 cycles), rapid self-healing performance (HE (healing efficiency) ∼97.03%), and excellent repeatable adhesion. The flexible wearable sensor assembled with SBG hydrogels demonstrated desirable strain sensing performance with a competitive gauge factor and exceptional stability, which enabled it to detect and distinguish various multiscale human motions and physiological signals. Furthermore, the flexible sensor is capable of precisely perceiving temperature variation with a high thermal sensitivity (1.685% °C-1). As a result, the wearable sensor displayed dual sensory performance for temperature and strain deformation. It is envisioned that the integration of strain sensors and thermal sensors provide a novel and convenient strategy for the next generation of multisensory wearable electronics and lay a solid foundation for their application in electronic skin and soft actuators.
Collapse
Affiliation(s)
- Rongrong Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
| |
Collapse
|
24
|
Mi Y, Zhao Z, Wu H, Lu Y, Wang N. Porous Polymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2023; 15:4383. [PMID: 38006107 PMCID: PMC10675394 DOI: 10.3390/polym15224383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Since the invention of the triboelectric nanogenerator (TENG), porous polymer materials (PPMs), with different geometries and topologies, have been utilized to enhance the output performance and expand the functionality of TENGs. In this review, the basic characteristics and preparation methods of various PPMs are introduced, along with their applications in TENGs on the basis of their roles as electrodes, triboelectric surfaces, and structural materials. According to the pore size and dimensionality, various types of TENGs that are built with hydrogels, aerogels, foams, and fibrous media are classified and their advantages and disadvantages are analyzed. To deepen the understanding of the future development trend, their intelligent and multifunctional applications in human-machine interfaces, smart wearable devices, and self-powering sensors are introduced. Finally, the future directions and challenges of PPMs in TENGs are explored to provide possible guidance on PPMs in various TENG-based intelligent devices and systems.
Collapse
Affiliation(s)
- Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Han Wu
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| |
Collapse
|
25
|
Isopencu GO, Covaliu-Mierlă CI, Deleanu IM. From Plants to Wound Dressing and Transdermal Delivery of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2023; 12:2661. [PMID: 37514275 PMCID: PMC10386126 DOI: 10.3390/plants12142661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Transdermal delivery devices and wound dressing materials are constantly improved and upgraded with the aim of enhancing their beneficial effects, biocompatibility, biodegradability, and cost effectiveness. Therefore, researchers in the field have shown an increasing interest in using natural compounds as constituents for such systems. Plants, as an important source of so-called "natural products" with an enormous variety and structural diversity that still exceeds the capacity of present-day sciences to define or even discover them, have been part of medicine since ancient times. However, their benefits are just at the beginning of being fully exploited in modern dermal and transdermal delivery systems. Thus, plant-based primary compounds, with or without biological activity, contained in gums and mucilages, traditionally used as gelling and texturing agents in the food industry, are now being explored as valuable and cost-effective natural components in the biomedical field. Their biodegradability, biocompatibility, and non-toxicity compensate for local availability and compositional variations. Also, secondary metabolites, classified based on their chemical structure, are being intensively investigated for their wide pharmacological and toxicological effects. Their impact on medicine is highlighted in detail through the most recent reported studies. Innovative isolation and purification techniques, new drug delivery devices and systems, and advanced evaluation procedures are presented.
Collapse
Affiliation(s)
- Gabriela Olimpia Isopencu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| | - Cristina-Ileana Covaliu-Mierlă
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Iuliana-Mihaela Deleanu
- Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest, Polizu Str. 1-7, 011061 Bucharest, Romania
| |
Collapse
|
26
|
Wang F, Liu B, Cao W, Liu L, Zeng F, Qin C, Liang C, Huang C, Yao S. Novel dual-action vanillic acid pretreatment for efficient hemicellulose separation with simultaneous inhibition of lignin condensation. BIORESOURCE TECHNOLOGY 2023; 385:129416. [PMID: 37390932 DOI: 10.1016/j.biortech.2023.129416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Aromatic acids play a selective role in the separation of hemicellulose. Phenolic acids have demonstrated an inhibitory effect on lignin condensation. In the current study, vanillic acid (VA), which combines the characteristics of aromatic and phenolic acids, is used to separate eucalyptus. The efficient and selective separation of hemicellulose is achieved simultaneously at 170 °C, 8.0% VA concentration, and 80 min. The separation yield of xylose increased from 78.80% to 88.59% compared to acetic acid (AA) pretreatment. The separation yield of lignin decreased from 19.32% to 11.19%. In particular, the β-O-4 content of lignin increased by 5.78% after pretreatment. The results indicate that VA, as a "carbon positive ion scavenger", it preferentially reacts with the carbon-positive ion intermediate of lignin. Surprisingly, the inhibition of lignin condensation is achieved. This study provides a new starting point for the development of an efficient and sustainable commercial technology by organic acid pretreatment.
Collapse
Affiliation(s)
- Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Wenqing Cao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Fanyan Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning, 530004, PR China.
| |
Collapse
|
27
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
28
|
Liang J, Liu B, Li X, Mo X, Qin C, Liang C, Huang C, Yao S. Simultaneous achievement of efficient hemicellulose separation and inhibition of lignin repolymerization using pyruvic acid treatment. BIORESOURCE TECHNOLOGY 2023; 384:129328. [PMID: 37329991 DOI: 10.1016/j.biortech.2023.129328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The efficiency of organic acid treatment in the conversion of lignocellulosic biomass fractions has been widely recognized. In this study, a novel green pyruvic acid (PA) treatment is proposed. The higher separation efficiency of eucalyptus hemicellulose was obtained at 4.0% PA and 150 °C. The hemicellulose separation yield was increased from 71.71 to 88.09% compared to glycolic acid (GA) treatment. In addition, the treatment time was significantly reduced from 180 to 40 min. The proportion of cellulose in the solid increased after PA treatment. However, the accompanying separation of lignin was not effectively controlled. Fortunately, a six-membered ring structure was formed on the diol structure of the lignin β-O-4 side chain. Fewer lignin-condensed structures were observed. High-value lignin rich in phenol hydroxyl groups were obtained. It provides a green path for the simultaneous achievement of efficient hemicellulose separation and inhibition of lignin repolymerization using organic acid treatment.
Collapse
Affiliation(s)
- Jiarui Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiangyu Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xiaorong Mo
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
29
|
Tovar-Lopez FJ. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. SENSORS (BASEL, SWITZERLAND) 2023; 23:5406. [PMID: 37420577 DOI: 10.3390/s23125406] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
Micro- and nanotechnology-enabled sensors have made remarkable advancements in the fields of biomedicine and the environment, enabling the sensitive and selective detection and quantification of diverse analytes. In biomedicine, these sensors have facilitated disease diagnosis, drug discovery, and point-of-care devices. In environmental monitoring, they have played a crucial role in assessing air, water, and soil quality, as well as ensured food safety. Despite notable progress, numerous challenges persist. This review article addresses recent developments in micro- and nanotechnology-enabled sensors for biomedical and environmental challenges, focusing on enhancing basic sensing techniques through micro/nanotechnology. Additionally, it explores the applications of these sensors in addressing current challenges in both biomedical and environmental domains. The article concludes by emphasizing the need for further research to expand the detection capabilities of sensors/devices, enhance sensitivity and selectivity, integrate wireless communication and energy-harvesting technologies, and optimize sample preparation, material selection, and automated components for sensor design, fabrication, and characterization.
Collapse
|
30
|
Hou Y, Deng B, Wang S, Ma Y, Long X, Wang F, Qin C, Liang C, Yao S. High-Strength, High-Water-Retention Hemicellulose-Based Hydrogel and Its Application in Urea Slow Release. Int J Mol Sci 2023; 24:ijms24119208. [PMID: 37298162 DOI: 10.3390/ijms24119208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The use of fertilizer is closely related to crop growth and environmental protection in agricultural production. It is of great significance to develop environmentally friendly and biodegradable bio-based slow-release fertilizers. In this work, porous hemicellulose-based hydrogels were created, which had excellent mechanical properties, water retention properties (the water retention ratio in soil was 93.8% after 5 d), antioxidant properties (76.76%), and UV resistance (92.2%). This improves the efficiency and potential of its application in soil. In addition, electrostatic interaction and coating with sodium alginate produced a stable core-shell structure. The slow release of urea was realized. The cumulative release ratio of urea after 12 h was 27.42% and 11.38%, and the release kinetic constants were 0.0973 and 0.0288, in aqueous solution and soil, respectively. The sustained release results demonstrated that urea diffusion in aqueous solution followed the Korsmeyer-Peppas model, indicating the Fick diffusion mechanism, whereas diffusion in soil adhered to the Higuchi model. The outcomes show that urea release ratio may be successfully slowed down by hemicellulose hydrogels with high water retention ability. This provides a new method for the application of lignocellulosic biomass in agricultural slow-release fertilizer.
Collapse
Affiliation(s)
- Yajun Hou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shanshan Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yun Ma
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xing Long
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
31
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
32
|
Chelu M, Musuc AM. Polymer Gels: Classification and Recent Developments in Biomedical Applications. Gels 2023; 9:161. [PMID: 36826331 PMCID: PMC9956074 DOI: 10.3390/gels9020161] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Polymer gels are a valuable class of polymeric materials that have recently attracted significant interest due to the exceptional properties such as versatility, soft-structure, flexibility and stimuli-responsive, biodegradability, and biocompatibility. Based on their properties, polymer gels can be used in a wide range of applications: food industry, agriculture, biomedical, and biosensors. The utilization of polymer gels in different medical and industrial applications requires a better understanding of the formation process, the factors which affect the gel's stability, and the structure-rheological properties relationship. The present review aims to give an overview of the polymer gels, the classification of polymer gels' materials to highlight their important features, and the recent development in biomedical applications. Several perspectives on future advancement of polymer hydrogel are offered.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|