1
|
Wang Y, Li N, Huang GW, Liu Y, Li SZ, Cao RX, Xiao HM. Advancements in 2D Titanium Carbide (MXene) for Electromagnetic Wave Absorption: Mechanisms, Methods, Enhancements, and Applications. SMALL METHODS 2025:e2401982. [PMID: 39876638 DOI: 10.1002/smtd.202401982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Indexed: 01/30/2025]
Abstract
With the advent of the 5G era, there has been a marked increase in research interest concerning electromagnetic wave-absorbing materials. A critical challenge remains in improving the wave-absorbing properties of these materials while satisfying diverse application demands. MXenes, identified as prominent "emerging" 2D materials for wave absorption, offer unique advantages that are expected to drive advancements and innovations in this field. This review emphasizes the synthesis benefits provided by the unique structural characteristics of MXenes and the performance enhancements achieved through their combination with other absorbing materials. Material requirements, synthesis approaches, and conceptual frameworks are integrated to underscore these advantages. The study provides a thorough analysis of MXene-absorbing composites, going beyond basic classification to address preparation and modification processes affecting the absorption properties of MXenes and their composites. Attention is directed to synthesis techniques, structural design principles, and their influence on composite performance. Additionally, the potential applications of MXenes in electromagnetic wave absorbing devices are summarized. The review concludes by addressing the challenges currently confronting MXene materials and outlining expected developmental trends, aiming to offer guidance for subsequent research in this domain.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Na Li
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Gui-Wen Huang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu Liu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Si-Zhe Li
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui-Xiao Cao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Mei Xiao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Lei X, Majeed MA, Xu J, Shi W, Song C, Yu C, Cheng H, Zhang W. Plasma-Driven Conversion of 2D Graphene into 3D Pouch for Improved Electromagnetic Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65211-65221. [PMID: 39542427 DOI: 10.1021/acsami.4c15142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Graphene-based materials are ideal for electromagnetic wave-absorbing materials (EAMs) due to their strong electrical and dielectric losses with reduced thickness and weight. To enhance the electromagnetic wave absorption performance of these materials, additional components are often incorporated. However, this approach not only increases the complexity of the synthesis process but also complicates and destabilizes the control of the material properties. In this study, we successfully employed a one-step method to reduce graphene oxide and transform 2D graphene into a 3D pocket-like structure through plasma treatment. This unique 3D structure is induced by the formation of uneven defects on the surface due to plasma treatment. The distinctive pouch-like structure of the reduced graphene oxide achieved remarkable electromagnetic wave absorption properties. Specifically, the material demonstrated a minimum reflection loss of -38.65 dB at 7.14 GHz, with an effective absorption bandwidth of 5.13 GHz and a thickness of just 1.9 mm. These results highlight the potential of plasma processing as a rapid, efficient, and environmentally friendly approach for the continuous production of advanced EAMs, paving the way for greener manufacturing practices in the industry.
Collapse
Affiliation(s)
- Xiaoting Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Muhammad Amjad Majeed
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Jianyong Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Wei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Changkun Song
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Chunpei Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - He Cheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
- School of State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Wenchao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
3
|
Qiu J, Li J, Li W, Wang K, Zhang S, Suk CH, Wu C, Zhou X, Zhang Y, Guo T, Kim TW. Advancements in Nanowire-Based Devices for Neuromorphic Computing: A Review. ACS NANO 2024; 18:31632-31659. [PMID: 39499041 DOI: 10.1021/acsnano.4c10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Neuromorphic computing, inspired by the highly interconnected and energy-efficient way the human brain processes information, has emerged as a promising technology for post-Moore's law era. This emerging technology can emulate the structures and the functions of the human brain and is expected to overcome the fundamental limitation of the current von Neumann computing architecture. Neuromorphic devices stand out as the key components of future electronic systems, exhibiting potential in shaping the landscape of neuromorphic computing. Especially, nanowire (NW)-based neuromorphic devices, with their advantages of high integration, high-speed computing, and low power consumption, have recently emerged as candidates for neuromorphic computing technology. Here, a critical overview of the current development and relevant research in the field of NW-based neuromorphic devices are provided. Neuromorphic devices based on different NW materials are comprehensively discussed, including Ag NW-based, organic NW-based, metal oxide NW-based, and semiconductor NW-based devices. Finally, as a foresight perspective, the potentials and the challenges of these NW-based neuromorphic devices for use as future brain-like electronics are discussed.
Collapse
Affiliation(s)
- Jiawen Qiu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junlong Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenhao Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Kun Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shuqian Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chan Hee Suk
- Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaoxing Wu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Xiongtu Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Yongai Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Tailiang Guo
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Tae Whan Kim
- Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Sun C, Lan D, Jia Z, Gao Z, Wu G. Kirkendall Effect-Induced Ternary Heterointerfaces Engineering for High Polarization Loss MOF-LDH-MXene Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405874. [PMID: 39206598 DOI: 10.1002/smll.202405874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Heterogeneous interfacial engineering has garnered widespread attention for optimizing polarization loss and enhancing the performance of electromagnetic wave absorption. A novel Kirkendall effect-assisted electrostatic self-assembly method is employed to construct a metal-organic framework (MOF, MIL-88A) decorated with Ni-Fe layered double hydroxide (LDH), forming a multilayer nano-cage coated with Ti3C2Tx. By modulating the surface adsorption of Ti3C2Tx on LDH, the heterointerfaces in MOF-LDH-MXene ternary composites exhibit excellent interfacial polarization loss. Additionally, the Ni-Fe LDH@Ti3C2Tx nano-cage exhibits a large specific surface area, abundant defects, and a large number of heterojunction structures, resulting in excellent electromagnetic wave absorption performance. The MIL-88A@Ni-Fe LDH@Ti3C2Tx-1.0 nano-cage achieves a reflection loss value of -46.7 dB at a thickness of 1.4 mm and an effective absorption bandwidth of 5.12 GHz at a thickness of 1.8 mm. The heterojunction interface composed of Ni-Fe LDH and Ti3C2Tx helps to enhance polarization loss. Additionally, Ti3C2Tx forms a conductive network on the surface, while the cavity between the MIL-88A core and the Ni-Fe LDH shell facilitates multiple attenuations by increasing the transmission path of internal incident waves. This work may reveal a new structural design of multi-component composites by heterointerfaces engineering for electromagnetic wave absorption.
Collapse
Affiliation(s)
- Chunhua Sun
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenguo Gao
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Bi X, Song K, Zhang Z, Lin T, Pan YT, Fu W, Song P, He J, Yang R. Joint Exfoliation of MXene by Dimensional Mismatched SiC/ZIF-67 Toward Multifunctional Flame Retardant Thermoplastic Polyurethane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403375. [PMID: 39031681 DOI: 10.1002/smll.202403375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Indexed: 07/22/2024]
Abstract
The single-layer MXene fully demonstrates the advantages of 2D materials, especially catalytic, conductive, and mechanical properties. However, the high energy consumption and low efficiency faced by MXene in the divestiture process are still challenges that need to be solved urgently. In this article, dimension mismatch and collaborative stripping strategies are skillfully combined to easily realize the transformation from multi-layer MXene to single layer. In addition, the functionalized MXene@SiC@polyaniline (MXene@SiC@PANI) nano-hybrid materials are used as fillers to improve the thermal conductivity, flame retardant, and antibacterial properties of thermoplastic polyurethane (TPU). The surface temperature of TPU/MXene@SiC@PANI composites increased from 33.4 °C to 59.8 °C within 10 s. In addition, the antibacterial efficiency of TPU composites against Escherichia coli and Staphylococcus aureus is 69.6% and 88.9%, respectively. Compared with pure TPU, the peak heat release rate and total heat release are reduced by 71.4% and 34.6%, respectively. The flame-retardant mechanism of MXene hybrid materials is systematically discussed. It is worth noting that the introduction of PANI enhances the compatibility between the filler and the polymer, effectively maintaining the mechanical properties of the TPU itself. This work provides a convenient method for the multi-functional practical application of TPU.
Collapse
Affiliation(s)
- Xue Bi
- National Engineering Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Zhongyuan Research Center for Flame Retardant Materials, Beijing Institute of Technology, Xuchang, 461000, China
| | - Kunpeng Song
- National Engineering Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zeqi Zhang
- National Engineering Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Zhongyuan Research Center for Flame Retardant Materials, Beijing Institute of Technology, Xuchang, 461000, China
| | - Tao Lin
- Sch Mat Sci & Engn, Tsinghua Univ, Beijing, 100084, China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wangyang Fu
- Sch Mat Sci & Engn, Tsinghua Univ, Beijing, 100084, China
| | - Pingan Song
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfeld Central, QLD, 4300, Australia
- Centre for Future Materials, University of Southern Queensland, Springfeld Central, QLD, 4300, Australia
| | - Jiyu He
- National Engineering Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rongjie Yang
- National Engineering Research Center of Flame-Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Zhongyuan Research Center for Flame Retardant Materials, Beijing Institute of Technology, Xuchang, 461000, China
| |
Collapse
|
6
|
Wang H, Xiao X, An Q, Xiao Z, Zhu K, Zhai S, Dong X, Xue C, Wu H. Low-Frequency Evolution Mechanism of Customized HEAs-Based Electromagnetic Response Modes Manipulated by Carbothermal Shock. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309773. [PMID: 38461545 DOI: 10.1002/smll.202309773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Indexed: 03/12/2024]
Abstract
An emerging carbothermal shock method is an ultra-convenient strategy for synthesizing high-entropy alloys (HEAs), in which the intelligent combination of carbon support and HEAs can be serve as a decisive factor for interpreting the trade-off relationship between conductive gene and dielectric gene. However, the feedback mechanism of HEAs ordering degree on electromagnetic (EM) response in 2-18 GHz has not been comprehensively demystified. Herein, while lignin-based carbon fiber paper (L-CFP) as carbon support, L-CFP/FeCoNiCuZn-X with is prepared by carbothermal shock method. The reflection loss of -82.6 dB with thickness of 1.31 mm is achieved by means of pointing electron enrichment within L-CFP/FeCoNiCuZn HEAs heterointerfaces verified by theoretical calculations. Simultaneously, low-frequency evolution with high-intensity and broadband EM response relies on a "sacrificing" strategy achieved by construction of polymorphic L-CFP/semi-disordered-HEAs heterointerfaces. The practicality of L-CFP/FeCoNiCuZn-X in complex environments is given prominence to thermal conductivity, hydrophobicity, and electrocatalytic property. This work is of great significance for insightful mechanism analysis of HEAs in the application of electromagnetic wave absorption.
Collapse
Affiliation(s)
- Honghan Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xinyu Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Kairuo Zhu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xiaoling Dong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
7
|
Wu Z, Tan X, Wang J, Xing Y, Huang P, Li B, Liu L. MXene Hollow Spheres Supported by a C-Co Exoskeleton Grow MWCNTs for Efficient Microwave Absorption. NANO-MICRO LETTERS 2024; 16:107. [PMID: 38305954 PMCID: PMC10837412 DOI: 10.1007/s40820-024-01326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
High-performance microwave absorption (MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C-Co frameworks, was prepared to develop multiwalled carbon nanotubes (MWCNTs). A high impedance and suitable morphology were guaranteed by the C-Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core-shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss (RLmin) was - 70.70 dB. At a thickness of 1.861 mm, the sample calcined at 700 °C had a RLmin of - 63.25 dB. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core-shell composite MA materials with magnetoelectric synergy.
Collapse
Affiliation(s)
- Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xiuli Tan
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jianqiao Wang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
8
|
Li X, Zhang Z, Chen L, Zhang J, Chen W, Feng R, Wang X. Multifunctional MnFe 2O 4/TiO 2/Ti 3C 2T x composites based on in-situ grown TiO 2 for efficient microwave absorption, high hydrophobicity, and heat dissipation properties. J Colloid Interface Sci 2024; 654:96-106. [PMID: 37837855 DOI: 10.1016/j.jcis.2023.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Despite the fact that the 2D structure Ti3C2Tx with abundant defects and functional groups contributes to the high microwave absorption (MA) performance, it is difficulty to improve the strength and bandwidth by pursuing higher conductivity or loading more groups due to the limitation of intrinsic properties. Therefore, it is important to ingeniously design efficient Ti3C2Tx based MA composites assembling the features of abundant surface groups, good dispersibility, multiple composition, and precise structure. Inspired by the fact that Ti3C2Tx contains thermodynamically metastable marginal Ti atoms, TiO2 nanoparticles can be grown in-situ on Ti3C2Tx nanosheets uniformly and increase the spacing of Ti3C2Tx layers, and then MnFe2O4 nanoparticles are introduced into the layers of Ti3C2Tx by electrostatic self-assembly method for optimized impedance matching. This designed hierarchical MnFe2O4/TiO2/Ti3C2Tx composites shows excellent MA performance, and the minimum reflection loss (RLmin) reaches -46.91 dB with a thickness of 2.5 mm at frequency of 10.4 GHz. The high MA performance mainly comes from the enhanced interfacial polarization induced by edges location and interface region among TiO2, MnFe2O4, and Ti3C2Tx. In addition, the conduction loss existed in the interior untreated Ti3C2Tx, the dielectric loss generated by multiple composition, the multiple scattering from improved large surface specific area all contribute to the excellent MA performance. Meanwhile, the simple preparation process and good stability storage at room temperature under air atmosphere of the MnFe2O4/TiO2/Ti3C2Tx composites promote its exploration on practical use, and the lab-gown cloth coated with MnFe2O4/TiO2/Ti3C2Tx composites shows better electromagnetic shielding properties, hydrophobicity, and heat transfer ability than pure fabric, showing the potential for practical application.
Collapse
Affiliation(s)
- Xing Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Zhaozuo Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Lin Chen
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Jinming Zhang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Wansong Chen
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Ru Feng
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Xiaoxia Wang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
9
|
Yan H, Guo Y, Bai X, Qi J, Lu H. Facile constructing Ti 3C 2T x/TiO 2@C heterostructures for excellent microwave absorption properties. J Colloid Interface Sci 2024; 654:1483-1491. [PMID: 37867074 DOI: 10.1016/j.jcis.2023.10.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Optimizing and enhancing the performance of electromagnetic wave (EMW) absorption materials relies on the modification of their composition and structure through heterogeneous interface engineering. Ti3C2Tx's high conductivity results in an impedance mismatch, which hinders efficient EMW absorption. Herein, a one-step catalytic chemical vapor deposition (CCVD) method is used to construct the Ti3C2Tx/TiO2@C heterogeneous structure. Upon annealing at 500 °C, amorphous carbon is uniformly deposited on the Ti3C2Tx surface, thereby incorporating the scale-like TiO2 generated during the process. The inclusion of the amorphous carbon layer and TiO2 reduces the substrate's conductivity, achieving optimized impedance matching. Additionally, building heterogeneous interfaces between Ti3C2Tx, TiO2, and C enriches multiple loss mechanisms involving dipole and interfacial polarization, ultimately enabling optimal EMW absorption performance. The minimum reflection loss (RLmin) value of Ti3C2Tx/TiO2@C-500 is -53.12 dB when its thickness and frequency are 1.15 mm and 13.80 GHz, respectively. Moreover, thermal infrared imaging confirms that coatings fabricated using Ti3C2Tx/TiO2@C-500 demonstrate a favorable heat dissipation rate, validating its effectiveness in addressing the challenge of efficient heat dissipation in electronic devices. This study significantly contributes to the progress of two-dimensional (2D) materials, enabling high-performance EMW absorption and expanding their applications in complex scenarios.
Collapse
Affiliation(s)
- Huying Yan
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Guo
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Electrical and Information Engineering, University of Panzhihua, Panzhihua 617000, China.
| | - Xingzhi Bai
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiawei Qi
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Haipeng Lu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
10
|
Wang L, Li X, Qian Y, Li W, Xiong T, Tao Y, Li Y, Li J, Luo Y, Jiang Q, Yang J. MXene-Layered Double Hydroxide Reinforced Epoxy Nanocomposite with Enhanced Electromagnetic Wave Absorption, Thermal Conductivity, and Flame Retardancy in Electronic Packaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304311. [PMID: 37697695 DOI: 10.1002/smll.202304311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Indexed: 09/13/2023]
Abstract
Due to the increased integration and miniaturization of electronic devices, traditional electronic packaging materials, such as epoxy resin (EP), cannot solve electromagnetic interference (EMI) in electronic devices. Thus, the development of multifunctional electronic packaging materials with superior electromagnetic wave absorption (EMA), high heat dissipation, and flame retardancy is critical for current demand. This study employs an in-situ growth method to load layered double hydroxides (LDH) onto transition metal carbides (MXene), synthesizing a novel composite material (MXene@LDH). MXene@LDH possesses a sandwich structure and exhibits excellent EMA performance, thermal conductivity, and flame retardancy. By adjusting the load of LDH, under the synergistic effect of multiple factors, such as dielectric and polarization losses, this work achieves an EMA material with a remarkable minimum reflection loss (RL) of -52.064 dB and a maximum effective absorption bandwidth (EAB) of 4.5 GHz. Furthermore, MXene@LDH emerges a bridging effect in EP, namely MXene@LDH/EP, leading to a 118.75% increase in thermal conductivity compared to EP. Simultaneously, MXene@LDH/EP contributes to the enhanced flame retardancy compared to EP, resulting in a 46.5% reduction in the total heat release (THR). In summary, this work provides a promising candidate advanced electronic packaging material for high-power density electronic packaging.
Collapse
Affiliation(s)
- Luyao Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xin Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongxin Qian
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wang Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianshun Xiong
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yang Tao
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - You Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Junwei Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yubo Luo
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qinghui Jiang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Junyou Yang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Ban Q, Li L, Li Y, Liu H, Zheng Y, Qin Y, Zhang H, Kong J. Polymer self-assembly guided heterogeneous structure engineering towards high-performance low-frequency electromagnetic wave absorption. J Colloid Interface Sci 2023; 650:1434-1445. [PMID: 37481781 DOI: 10.1016/j.jcis.2023.07.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Magnetic-dielectric synergy is currently regarded as among the most effective approaches to achieve low-frequency electromagnetic wave absorption (EMA). However, designing and fabricating EMA materials with tunable magnetic-dielectric balance towards high-performance low-frequency EMA remains challenging. Herein, a polymer self-assembly guided heterogeneous structure engineering strategy is proposed to fabricate hierarchical magnetic-dielectric nanocomposite. Polymer assemblies not only can be employed as intermediates to encapsulate metal-organic frameworks and load metal hydroxide, but also that they play a crucial role for the in-situ formation of polycrystalline FeCo/Co composite nanoparticles. As a result, the minimum reflection loss (RLmin) can reach -59.61 dB at 5.4 GHz (4.8 mm) with a 20 wt% filler loading, while the effective absorption bandwidth (EAB, RLmin ≤ -10 dB) is 2.16 GHz, exhibiting excellent low-frequency EMA performance. Systematic investigations demonstrate that hierarchical mesoporous carbon matrix that supports FeCo/Co composite nanoparticles is beneficial for optimizing impedance matching and increasing attenuation capacity. In general, this study opens up new prospects for developing magnetic-dielectric EMA materials using a polymer self-assembly guided heterogeneous structure engineering strategy, which may receive significant attention in future research.
Collapse
Affiliation(s)
- Qingfu Ban
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China.
| | - Luwei Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Yan Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Huimin Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yaochen Zheng
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Hongru Zhang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, PR China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
12
|
Zhao J, Wang H, Chen M, Li Y, Wang Z, Fang C, Liu P. Construct of CoZnO/CSP biomass-derived carbon composites with broad effective absorption bandwidth of 7.2 GHz and excellent microwave absorption performance. J Colloid Interface Sci 2023; 639:160-170. [PMID: 36804789 DOI: 10.1016/j.jcis.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
Biomass-carbon materials have excellent electromagnetic wave attenuation properties, which is one of the essential factors for developing ultra-thin matched-thickness, and high-performance microwave absorption materials. This study reports a two-step procedure consisting of carbonization and subsequent in-situ growth for preparing a wrinkle-like multilayer biomass-derived composites with magnetic Co particles and ZnO particles (CoZnO/C-X). The synergistic effect of a wrinkle-like multilayer structure and Co and ZnO particles, as well as the existence of many heterogeneous interfaces in the composites structure, and efficiently creates multiple scattering and reflections, which gives the composites the strong microwave absorption properties. The minimum reflection loss value (RLmin) of CoZnO/C-X reaches - 54.90 dB with a thickness of 1.8 mm, and the effective absorption bandwidth (lower than - 10 dB) is 7.2 GHz covering from 10.8 GHz to18.0 GHz with matching thickness of 2.0 mm. Furthermore, the reasonable dielectric/magnetic losses, optimized impedance matching and enhanced polarization loss play an indispensable role among improving microwave absorption performance. Thus, this result provides a good potential method for preparation of magnetic particle/metal oxide/biomass-derived carbon microwave absorbing structural materials.
Collapse
Affiliation(s)
- Jiarui Zhao
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Hao Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Meiju Chen
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yan Li
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Zhen Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China; China National Silicon Substrate LED Engineering Technology Research Center, Nanchang University, 330096, PR China.
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Panbo Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.
| |
Collapse
|
13
|
Zhao J, Wang H, Li Y, Wang Z, Fang C, Liu P. Construction of self-assembled bilayer core-shell V 2O 3 microspheres as absorber with superior microwave absorption performance. J Colloid Interface Sci 2023; 639:68-77. [PMID: 36804794 DOI: 10.1016/j.jcis.2023.02.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
The design and preparation of heterogeneous structures of dielectric materials has been the mainstream direction for the construction of superior microwave absorption materials (MAMs). We report a facile and efficient procedure combination of hydrothermal process and subsequent heat treatment for successfully prepared bilayer core-shell structure self-assembled V2O3 microspheres (BCSV). The microstructure, defects, dielectric properties and microwave absorption (MA) properties of BCSV were systematically investigated, and the effect of bilayer core-shell structure on the MA properties was discussed. By varying the heat treatment temperature, it is feasible to regulate the thickness of V2O3 bilayer and its unique structure defects, hence enhancing the attenuation and multiple polarization loss of electromagnetic waves inside the microspheres. Self-assembled V2O3 microspheres with bilayer core-shell structure exhibit high-performance MA property. The reflection loss (RL) gets to - 67.12 dB at 11.69 GHz covering the whole X-band after heat treatment at 600 °C, and the broad effective absorption bandwidth is 5.49 GHz with a thickness of 2.20 mm. The conductivity loss, multiple polarization loss and dielectric loss are ascribed to the specific bilayer core-shell structure. Thus, our work provides a good perspective on how to create vanadium oxide-based MAMs with effective absorption and broad bandwidth.
Collapse
Affiliation(s)
- Jiarui Zhao
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Hao Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yan Li
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Zhen Wang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China; School of Physics and Materials Science, Nanchang University, 330096, P. R. China.
| | - Changqing Fang
- School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Panbo Liu
- School of chemistry and chemical engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China.
| |
Collapse
|