1
|
Liu Y, Xu M, Long H, Vasiliev RB, Li S, Meng H, Chang S. Alternating current electroluminescence devices: recent advances and functional applications. MATERIALS HORIZONS 2024; 11:5147-5180. [PMID: 39034868 DOI: 10.1039/d4mh00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Wearable smart devices and visualisation sensors based on alternating current electroluminescence (ACEL) have received considerable attention in recent years. Due to the unique properties of ACEL devices, such as high mechanical strength, adaptability to complex environments, and no need for energy level matching, ACEL is suitable for multifunctional applications and visualisation sensing platforms. This review comprehensively outlines the latest developments in ACEL devices, starting with an analysis of the mechanism, classification, and optimisation strategies of ACEL. It introduces the functional applications of ACEL in multicolour displays, high-durability displays, stretchable and wearable displays, and autonomous function displays. Particularly, it emphasises the research progress of ACEL in sensory displays under interactive conditions such as liquid sensing, environmental factor sensing, kinetic energy sensing, and biosensing. Finally, it forecasts the challenges and new opportunities faced by future functional and interactive ACEL devices in fields such as artificial intelligence, smart robotics, and human-computer interaction.
Collapse
Affiliation(s)
- Yibin Liu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Platform for Applied Nanophotonics, Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen 518115, China
| | - Meili Xu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Hui Long
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman B Vasiliev
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Shukui Li
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shuai Chang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Platform for Applied Nanophotonics, Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen 518115, China
| |
Collapse
|
2
|
Zhu Y, Hong A, Yoon S, Park J, Yang H, Kwak J, Yoon J. Bright Bifacial White-Light Illumination by Highly Deformable Electroluminescent Devices Based on Transparent Ionic-Hydrogel Electrodes and Quantum-Dot Color Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400704. [PMID: 38712580 DOI: 10.1002/smll.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/06/2024] [Indexed: 05/08/2024]
Abstract
Deformable alternating-current electroluminescent (ACEL) devices are of increasing interest because of their potential to drive innovation in soft optoelectronics. Despite the research focus on efficient white ACEL devices, achieving deformable devices with high luminance remains difficult. In this study, this challenge is addressed by fabricating white ACEL devices using color-conversion materials, transparent and durable hydrogel electrodes, and high-k nanoparticles. The incorporation of quantum dots enables the highly efficient generation of red and green light through the color conversion of blue electroluminescence. Although the ionic-hydrogel electrode provides high toughness, excellent light transmittance, and superior conductivity, the luminance of the device is remarkably enhanced by the incorporation of a high-k dielectric, BaTiO3. The fabricated ACEL device uniformly emits very bright white light (489 cd m-2) with a high color-rendering index (91) from both the top and bottom. The soft and tough characteristics of the device allow seamless operation in various deformed states, including bending, twisting, and stretching up to 400%, providing a promising platform for applications in a wide array of soft optoelectronics.
Collapse
Affiliation(s)
- Yijie Zhu
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahyoung Hong
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - SukYoung Yoon
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jeongbin Park
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinhwan Yoon
- Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Seoul, 02504, Dongdaemun-gu, Republic of Korea
| |
Collapse
|
3
|
Guo H, Lin Y, Gu S, Hu G, Wang Q, Bai C, Sun Y, Yang C, Fang T, Chen X, Li D, Kong D. Stretchable and Breathable Electroluminescent Displays Based on Ultrathin Nanocomposite Designs. NANO LETTERS 2024; 24:5904-5912. [PMID: 38700588 DOI: 10.1021/acs.nanolett.4c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stretchable electroluminescent devices represent an emerging optoelectronic technology for future wearables. However, their typical construction on sub-millimeter-thick elastomers has limited moisture permeability, leading to discomfort during long-term skin attachment. Although breathable textile displays may partially address this issue, they often have distinct visual appearances with discrete emissions from fibers or fiber junctions. This study introduces a convenient procedure to create stretchable, permeable displays with continuous luminous patterns. The design utilizes ultrathin nanocomposite devices embedded in a porous elastomeric microfoam to achieve high moisture permeability. These displays also exhibit excellent deformability, low-voltage operation, and excellent durability. Additionally, the device is decorated with fluorinated silica nanoparticles to achieve self-cleaning and washable capabilities. The practical implementation of these nanocomposite devices is demonstrated by creating an epidermal counter display that allows intimate integration with the human body. These developments provide an effective design of stretchable and breathable displays for comfortable wearing.
Collapse
Affiliation(s)
- Haorun Guo
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Yong Lin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Shaoqiang Gu
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Gaohua Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Chong Bai
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Ting Fang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Xing Chen
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Dongchan Li
- College of Chemical Engineering and Technology, Engineering Research Center of Seawater Utilization Technology of Ministry of Education, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Wang Z, Ding Y, Yuan W, Chen H, Chen W, Chen C. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas. Bioengineering (Basel) 2024; 11:276. [PMID: 38534550 DOI: 10.3390/bioengineering11030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
EEG, which can provide brain alteration information via recording the electrical activity of neurons in the cerebral cortex, has been widely used in neurophysiology. However, conventional wet electrodes in EEG monitoring typically suffer from inherent limitations, including the requirement of skin pretreatment, the risk of superficial skin infections, and signal performance deterioration that may occur over time due to the air drying of the conductive gel. Although the emergence of dry electrodes has overcome these shortcomings, their electrode-skin contact impedance is significantly high and unstable, especially in hair-covered areas. To address the above problems, an active claw-shaped dry electrode is designed, moving from electrode morphological design, slurry preparation, and coating to active electrode circuit design. The active claw-shaped dry electrode, which consists of a claw-shaped electrode and active electrode circuit, is dedicated to offering a flexible solution for elevating electrode fittings on the scalp in hair-covered areas, reducing electrode-skin contact impedance and thus improving the quality of the acquired EEG signal. The performance of the proposed electrodes was verified by impedance, active electrode circuit, eyes open-closed, steady-state visually evoked potential (SSVEP), and anti-interference tests, based on EEG signal acquisition. Experimental results show that the proposed claw-shaped electrodes (without active circuit) can offer a better fit between the scalp and electrodes, with a low electrode-skin contact impedance (18.62 KΩ@1 Hz in the hairless region and 122.15 KΩ@1 Hz in the hair-covered region). In addition, with the active circuit, the signal-to-noise ratio (SNR) of the acquiring EEG signal was improved and power frequency interference was restrained, therefore, the proposed electrodes can yield an EEG signal quality comparable to wet electrodes.
Collapse
Affiliation(s)
- Zaihao Wang
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yuhao Ding
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wei Yuan
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Hongyu Chen
- Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Wei Chen
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chen Chen
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| |
Collapse
|
5
|
Li G, Sun F, Zhao S, Xu R, Wang H, Qu L, Tian M. Autonomous Electroluminescent Textile for Visual Interaction and Environmental Warning. NANO LETTERS 2023; 23:8436-8444. [PMID: 37690057 DOI: 10.1021/acs.nanolett.3c01653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Visual interaction is a promising strategy for the externalized expression and transmission of information, having wide application prospects in wearable luminous textiles. Achieving an autonomous luminous display and dynamic light response to environmental stimuli is attractive but attracts little attention. Herein, we propose a liquid responsive structure based on alternating-current electroluminescent fibers and demonstrate conductive-liquid-bridging electroluminescent fabrics with high integration and personalized patterns. Impressively, our electroluminescent fibers and textiles could afford a sensitive response and high robustness to water, glycerol, ethanol, and sodium chloride solution. The final electroluminescent textiles show an excellent luminescence performance of 149.08 cd m-2. On the proof of concept, a rain-sensing umbrella, luminous sportswear, and liquid response glove are fabricated to demonstrate water detection, visual interaction, and environmental warning. The textile-type visualizing-responding strategy proposed in this work may open up new avenues for the application of ACEL devices in the field of visual interaction.
Collapse
Affiliation(s)
- Ganghua Li
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Fengqiang Sun
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Shikang Zhao
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Ruidong Xu
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hang Wang
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, People's Republic of China
| |
Collapse
|