1
|
Kundu S, Mallick S, Riebe J, Niemeyer J. Directional Macrocycle Transport, Release, and Recapture Enabled by a Rotaxane Transporter. Chemistry 2025:e202501106. [PMID: 40194924 DOI: 10.1002/chem.202501106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/09/2025]
Abstract
A transporter for a directional macrocycle transport, release, and recapture was constructed. This was achieved using a rotaxane featuring a dibenzo-24-crown-8 macrocycle, dibenzylammonium (DBA)/methyl triazolium (MTA) stations on the thread and anthracene/triisopropylsilyl-acetylene stoppers, respectively. In the protonated rotaxane, the macrocycle primarily resides on the DBA station, followed by directional shuttling to the MTA station upon treatment with base. Addition of fluoride as an additional chemical input cleaves the triisopropylsilyl stopper, leading to release of the macrocycle and the half-thread into solution. The released macrocycle can be recaptured by protonation, and the mechanical bond can be reestablished via CuAAC click reaction, enabled by the terminal acetylene unit on the half-thread. This generates an elongated second-generation rotaxane transporter, which was used for a second cycle of directional macrocycle transport and release, proving the possibility of an iterative operation of the rotaxane-transporter in this molecular design.
Collapse
Affiliation(s)
- Sohom Kundu
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
- Research Center for Trustworthy Data Science and Security (UA Ruhr), Joseph-von-Fraunhofer-Str. 25, 44227, Dortmund, Germany
| | - Shubhadip Mallick
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jan Riebe
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| |
Collapse
|
2
|
Yoshida Y, Sagara Y. Rotaxane-Based Mechanochromic Mechanophore Enabled by Amide Bond Formation. Chem Asian J 2025:e202401826. [PMID: 40013459 DOI: 10.1002/asia.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Mechanochromic mechanophores are molecular structures that alter their absorption and fluorescence properties in response to applied mechanical force. Supramolecular mechanophores, which operate without requiring covalent bond cleavage, respond to smaller forces with instantaneous and reversible fluorescence changes. Rotaxane-based supramolecular mechanophores offer exceptional design flexibility due to their molecular structures. However, previously reported rotaxane mechanophores have predominantly relied on azide-alkyne Huisgen cycloaddition for the final rotaxane formation, which restricts the incorporation of azide or alkyne functional groups within the resulting rotaxane structure. This study presents a novel approach for synthesizing rotaxane mechanophores by constructing the axle molecule through amide bond formation between a succinimidyl ester and an amino group. Polyurethane elastomer films containing the rotaxane mechanophore exhibited a rapid and reversible on/off switch in green fluorescence from 9,10-bis(phenylethynyl)anthracene upon cycle stretching. The new mechanophore demonstrated force-responsive behavior comparable to previously reported rotaxane mechanophores. The amide bond formation strategy enables the incorporation of diverse functional groups into rotaxane-based mechanophores, significantly broadening their potential applications.
Collapse
Affiliation(s)
- Yuto Yoshida
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
3
|
Gridneva T, Khusnutdinova JR. Functional coordination compounds for mechanoresponsive polymers. Chem Commun (Camb) 2025; 61:441-454. [PMID: 39636308 DOI: 10.1039/d4cc05622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Small molecule probes that respond to a mechanical force ("mechanophores") have emerged as an important tool in the design of stimuli-responsive polymer materials. Although the majority of such mechanohphores are based on organic molecules, the utilization of metal complexes has also attracted attention as they offer a possibility to tune their spectroscopic properties and reactivity, and have the ability to reversibly form and break metal-ligand bonds through rational design of the ligand environment surrounding the metal. This review features representative examples of coordination compounds which were utilized as new, tunable tools to create various types of mechanoresponsive polymers.
Collapse
Affiliation(s)
- Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
4
|
Xie X, Bai W, Wang N, Qiu Z, Song X, Gao Y, Li B. Mechano-Responsive Fluorescent Gel based on Tetraphenylethylene-Crosslinked Dynamic Covalent Network. Chemistry 2024; 30:e202403623. [PMID: 39508827 DOI: 10.1002/chem.202403623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
The rapid development of mechano-responsive fluorescence has been driven by its promising applications in the fields of sensors, information encryption, and anti-counterfeiting. However, designing mechanophores that can exhibit fluorescence changes under relatively low force remains challenging. In this study, a mechano-responsive fluorescent gel was developed using a tetraphenylethylene derivative as a cross-linker, producing a dynamic covalent network that exhibits increased fluorescence under tensile stress. Based on controlled experimental studies and molecular modeling calculations, the fluorescence enhancement by external forces was attributed to the restriction of intramolecular motion in tetraphenylethylene by macromolecular chain orientation. In time-dependent experiments, due to the exchange of dynamic covalent bonds, the stress relaxation and the decrease in fluorescence intensity of the gel at fixed strain occurred simultaneously, demonstrating the potential of this fluorescence as an indication of internal stress through aggregation-induced emission (AIE) type mechanophore.
Collapse
Affiliation(s)
- Xiaohe Xie
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Weiwei Bai
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Nanqiao Wang
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Ziyan Qiu
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Xianxiao Song
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Yuhao Gao
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| | - Botian Li
- College of New Energy and Materials, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
5
|
Willis-Fox N. In-situ monitoring of polymer mechanochemistry: what can be learned from small molecule systems. Front Chem 2024; 12:1490847. [PMID: 39478993 PMCID: PMC11521884 DOI: 10.3389/fchem.2024.1490847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Using mechanical energy to drive chemical transformations is an exciting prospect to improve the sustainability of chemical reactions and to produce products not achievable by more traditional methods. In-situ monitoring of reaction pathways and chemical transformations is vital to deliver the reproducible results required for scale up to realize the potential of mechanochemistry beyond the chemistry lab. This mini review will discuss the recent advances in in-situ monitoring of ball milling and polymer mechanochemistry, highlighting the potential for shared knowledge for scale up.
Collapse
Affiliation(s)
- Niamh Willis-Fox
- Department of Materials, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Liu Q, Zhang T, Ikemoto Y, Shinozaki Y, Watanabe G, Hori Y, Shigeta Y, Midorikawa T, Harano K, Sagara Y. Grinding-Induced Water Solubility Exhibited by Mechanochromic Luminescent Supramolecular Fibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400063. [PMID: 38461517 DOI: 10.1002/smll.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Most mechanochromic luminescent compounds are crystalline and highly hydrophobic; however, mechanochromic luminescent molecular assemblies comprising amphiphilic molecules have rarely been explored. This study investigated mechanochromic luminescent supramolecular fibers composed of dumbbell-shaped 9,10-bis(phenylethynyl)anthracene-based amphiphiles without any tetraethylene glycol (TEG) substituents or with two TEG substituents. Both amphiphiles formed water-insoluble supramolecular fibers via linear hydrogen bond formation. Both compounds acquired water solubility when solid samples composed of supramolecular fibers are ground. Grinding induces the conversion of 1D supramolecular fibers into micellar assemblies where fluorophores can form excimers, thereby resulting in a large redshift in the fluorescence spectra. Excimer emission from the ground amphiphile without TEG chains is retained after dissolution in water. The micelles are stable in water because hydrophilic dendrons surround the hydrophobic luminophores. By contrast, when water is added to a ground amphiphile having TEG substituents, fragmented supramolecular fibers with the same molecular arrangement as the initial supramolecular fibers are observed, because fragmented fibers are thermodynamically preferable to micelles as the hydrophobic arrays of fluorophores are covered with hydrophilic TEG chains. This leads to the recovery of the initial fluorescent properties for the latter amphiphile. These supramolecular fibers can be used as practical mechanosensors to detect forces at the mesoscale.
Collapse
Affiliation(s)
- Qiming Liu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tianyue Zhang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yudai Shinozaki
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
- Department of Data Science, School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa, 243-0435, Japan
| | - Yuta Hori
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takemi Midorikawa
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Yoshimitsu Sagara
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|
7
|
Dong X, Zhang Z, Xiao H, Liu G, Lei SN, Wang Z, Yan X, Wang S, Tung CH, Wu LZ, Cong H. Assembly and Utility of a Drawstring-Mimetic Supramolecular Complex. Angew Chem Int Ed Engl 2024; 63:e202318368. [PMID: 38165266 DOI: 10.1002/anie.202318368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Inspired by the drawstring structure in daily life, here we report the development of a drawstring-mimetic supramolecular complex at the molecular scale. This complex consists of a rigid figure-of-eight macrocyclic host molecule and a flexible linear guest molecule which could interact through three-point non-covalent binding to form a highly selective and efficient host-guest assembly. The complex not only resembles the drawstring structure, but also mimics the properties of a drawstring with regard to deformations under external forces. The supramolecular drawstring can be utilized as an interlocked crosslinker for poly(methyl acrylate), and the corresponding polymer samples exhibit comprehensive enhancement of macroscopic mechanical performance including stiffness, strength, and toughness.
Collapse
Affiliation(s)
- Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shutao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Wang Y, Luo C, Lou X, Li F, Huang Y, Xia F. Fluorescent Selectivity-Enhanced FRET Based on 3D Photonic Crystals for Multianalyte Sensing. Anal Chem 2024; 96:1630-1639. [PMID: 38217493 DOI: 10.1021/acs.analchem.3c04547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Fluorescence resonance energy transfer (FRET) finds widespread utility in biochemical sensing, single-molecule experiments, cell physiology, and various other domains due to its inherent simplicity and high sensitivity. Nevertheless, the efficiency of energy transfer between the FRET donor and acceptor is significantly contingent on the local photonic environment, a factor that limits its application in complex systems or multianalyte detections. Here, a fluorescent selectivity-enhanced acridine orange (AO)-aflatoxins (AFs) FRET system based on a range of 3D topological photonic crystals (PCs) was developed with the aim of enhancing the selectivity and discrimination capabilities of FRET. By exploring the angle-dependent characteristics of the photonic stopband, the stopband distribution across different 3D topological PCs pixels was investigated. This approach led to selective fluorescence enhancement in PCs that matched the stopbands, enabling the successful discrimination of six distinct aflatoxins and facilitating complex multianalysis of moldy food samples. In particular, the stopband, which was strategically positioned within the blue-purple structural color range, exhibited a strong alignment with the fluorescence peaks of both the FRET donor and acceptor. This alignment allowed the 3D three-pointed star PCs to be effectively employed for the identification of mixed samples containing six distinct aflatoxins as well as the detection of real aflatoxin samples present in moldy potatoes, bread, oats, and peanuts. Impressively, this approach achieved a remarkable accuracy rate of 100%. This innovative strategy not only presents a novel avenue for developing a multitarget discrimination analysis system but also offers a convenient pretreatment method for the quantitative detection of various aflatoxins.
Collapse
Affiliation(s)
- Yanyan Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
9
|
Gridneva T, Karimata A, Bansal R, Fayzullin RR, Vasylevskyi S, Bruhacs A, Khusnutdinova JR. Deep-red photoluminescent mechanoresponsive polymers with dynamic Cu I-arylamide mechanophores. Chem Commun (Camb) 2023; 60:212-215. [PMID: 38050702 DOI: 10.1039/d3cc04643e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
We demonstrate the use of copper arylamide complexes as efficient photoluminescent mechanophores to design deep-red/near-IR emissive polymers showing reversible changes in photoluminescence intensity in the red/near-IR region in response to mechanical stretching. The mechanoresponse was repeatable over 30 cycles, showing a measurable increase of photoluminescence intensity even at a small applied stress of ca. 0.01 MPa. We demonstrate the potential of using conformationally dynamic copper amide complexes as sensitive and reversible mechanophores for near-IR imaging; systematic control over the emission range was achieved using amide modification.
Collapse
Affiliation(s)
- Tatiana Gridneva
- Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| | - Ayumu Karimata
- Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| | - Richa Bansal
- Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, Kazan 420088, Russian Federation
| | - Serhii Vasylevskyi
- Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| | - Andrew Bruhacs
- Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| | - Julia R Khusnutdinova
- Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
10
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
11
|
Tsai CY, Cheng HT, Chiu SH. Improbable Rotaxanes Constructed From Surrogate Malonate Rotaxanes as Encircled Methylene Synthons. Angew Chem Int Ed Engl 2023; 62:e202308974. [PMID: 37712453 DOI: 10.1002/anie.202308974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
We have developed a new approach for the synthesis of "improbable" rotaxanes by using malonate-centered rotaxanes as interlocked surrogate precursors. Here, the desired dumbbell-shaped structure can be assembled from two different, completely separate, portions, with the only residual structure introduced from the malonate surrogate being a methylene group. We have synthesized improbable [2]- and [3]rotaxanes with all-hydrocarbon dumbbell-shaped components to demonstrate the potential structural flexibility and scope of the guest species that can be interlocked when using this approach.
Collapse
Affiliation(s)
- Chi-You Tsai
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
12
|
Kermagoret A, Bardelang D. The Diversity of Cucurbituril Molecular Switches and Shuttles. Chemistry 2023:e202302114. [PMID: 37725407 DOI: 10.1002/chem.202302114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Ring translocation switches and shuttles featuring a macrocycle (or a ring molecule) navigating between two or more stations continue to attract attention. While the vast majority of these systems are developed in organic solvents, the cucurbituril (CB) macrocycles are ideally suited to prepare such systems in water. Indeed, their stability and their relatively high affinity for relevant guest molecules are key attributes toward translating the progresses made in organic solvents, into water. This concept article summarizes the findings, key advances and multiple possibilities offered by CBs toward advanced molecular switches and shuttles in water.
Collapse
|
13
|
Güixens-Gallardo P, Brea I, Manrique J, Shohraty F, Garcia-Amorós J, Velasco D. Programming Positive Mechanofluorescence in Liquid Crystalline Elastomers. ACS APPLIED POLYMER MATERIALS 2023; 5:6484-6492. [PMID: 38751730 PMCID: PMC11093412 DOI: 10.1021/acsapm.3c01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 05/18/2024]
Abstract
Liquid single crystal elastomers (LSCEs) containing organic fluorophores within their polymeric network are attractive materials to detect forces with simple spectroscopic measurements. Hitherto, all mechanoluminescent LSCEs decrease their emission intensity upon mechanical stimulation; that is, they display negative mechanofluorescence. Such behavior is governed by the mechanically induced approximation of the quenching mesogenic units and the fluorophores. In this work, we propose the integration of fluorescent molecular rotors (FMRs), whose luminescence is not quenched by the mesogens, in LSCEs as a valuable strategy to conceive elastomeric materials programmed with exactly the opposite behavior, i.e., their fluorescence increases upon deformation (positive mechanofluorescence). Specifically, carbazole-indolenine dyes are interesting candidates for this purpose since their luminescence depends mainly on the degree of intramolecular rotation allowed by the local environment. On this basis, the uniaxial deformation of an LSCE, along its anisotropic direction, incorporating such FMRs will place the fluorophores in a more restricted medium, leading to the desired enhanced emission at the macroscale.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ignacio Brea
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Jordi Manrique
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Farhad Shohraty
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - Jaume Garcia-Amorós
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolores Velasco
- Grup
de Materials Orgànics, Departament de Química Inorgànica
i Orgànica (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
- Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
14
|
Zhang MX, Cheng HT, Chiu SH. Dual-Way-Switchable Ester Rotaxanes Constructed Using the Recognition of Malonate Diesters. Org Lett 2023. [PMID: 37367218 DOI: 10.1021/acs.orglett.3c01666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Malonate diesters can thread into the cavity of a di(ethylene glycol)-containing macrocycle under the templating effect of a Na+ ion; the corresponding rotaxanes can be synthesized with good efficiency by applying several stoppering reactions. A molecular switch, in which the interlocked macrocycle was moved between two rarely used stations (i.e., malonate and TAA) through the addition of acid/base and the presence/absence of Na+ ions, was constructed using this new recognition system.
Collapse
Affiliation(s)
- Min-Xuan Zhang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|