1
|
Zhong L, Sun Y, Shen K, Li F, Liu H, Sun L, Xie D. Poly(Acrylic Acid)-Based Polymer Binders for High-Performance Lithium-Ion Batteries: From Structure to Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407297. [PMID: 39468909 DOI: 10.1002/smll.202407297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Poly(acrylic acid) (PAA) and its derivatives have emerged as promising candidates for enhancing the electrochemical performance of lithium-ion batteries (LIBs) as binder materials. Recent research has focused on evaluating their ability to improve adhesion with silicon (Si) particles and facilitate ion transport while maintaining electrode integrity. Various strategies, including mixing modifications and copolymerization methods, are highlighted and the structural and physicochemical properties of these binders are examined. Additionally, the interaction mechanisms between PAA-based binders and active materials and their impact on key electrochemical properties such as initial Coulombic efficiency (ICE) and cycle stability are discussed. The findings underscore the efficacy of tailored PAA-based binders in enhancing the electrochemical properties of LIBs, offering insights into the design principles and practical implications for advanced battery materials. These advancements hold promise for developing high-performance lithium batteries capable of meeting future energy storage demands.
Collapse
Affiliation(s)
- Liu Zhong
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yongrong Sun
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Fayong Li
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Hailu Liu
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Dong Xie
- Guang Dong Engineering Technology Research Center of Biomaterials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| |
Collapse
|
2
|
Ye R, Liu J, Tian J, Deng Y, Yang X, Chen Q, Zhang P, Zhao J. Novel Binder with Cross-Linking Reconfiguration Functionality for Silicon Anodes of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16820-16829. [PMID: 38527957 DOI: 10.1021/acsami.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Silicon is expected to be used as a high theoretical capacity anode material in lithium-ion batteries with high energy densities. However, the huge volume change incurred when silicon de-embeds lithium ions, leading to destruction of the electrode structure and a rapid reduction in battery capacity. Although binders play a key role in maintaining the stability of the electrode structure, commonly used binders cannot withstand the large volume expansion of the silicon. To alleviate this problem, we propose a PGC cross-linking reconfiguration binder based on poly(acrylic acid) (PAA), gelatin (GN), and β-cyclodextrin (β-CD). Within PGC, PAA supports the main chain and provides a large number of carboxyl groups (-COOH), GN provides rich carboxyl and amide groups that can form a cross-linking network with PAA, and β-CD offers rich hydroxyl groups and a cone-shaped hollow ring structure that can alleviate stress accumulation in the polymer chain by forming a new dynamic cross-linking coordination conformation during stretching. In the half cell, the silicon negative prepared by the PGC binder exhibited a high specific capacity and capacity maintenance ratio, and the specific capacity of the silicon negative electrode prepared by the PGC binder is still 1809 mAh g-1 and the capacity maintenance ratio is 73.76% following 200 cycles at 2 A g-1 current density, indicating that PGC sufficiently maintains the silicon negative structure during the battery cycle. The PGC binder has a simple preparation method and good capacity retention ability, making it a potential reference for the further development of silicon negative electrodes.
Collapse
Affiliation(s)
- Ruilai Ye
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiaxiang Liu
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianling Tian
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Yi Deng
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Xueying Yang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Qichen Chen
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Peng Zhang
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
| | - Jinbao Zhao
- College of Energy, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Engineering Research Center of Electrochemical Technology, Ministry of Education, State-Province Joint Engineering Laboratory of Power Source Technology for New Energy Vehicle, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
3
|
Nam S, Kim Y, Kim SH, Son HB, Han DY, Kim YH, Cho JH, Park J, Park S. Tailoring Three-Dimensional Cross-Linked Networks Based on Water-Soluble Polymeric Materials for Stable Silicon Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:594-604. [PMID: 38114065 DOI: 10.1021/acsami.3c13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
For stable battery operation of silicon (Si)-based anodes, utilizing cross-linked three-dimensional (3D) network binders has emerged as an effective strategy to mitigate significant volume fluctuations of Si particles. In the design of cross-linked network binders, careful selection of appropriate cross-linking agents is crucial to maintaining a balance between the robustness and functionality of the network. Herein, we strategically design and optimize a 3D cross-linked network binder through a comprehensive analysis of cross-linking agents. The proposed network is composed of poly(vinyl alcohol) grafted poly(acrylic acid) (PVA-g-PAA, PVgA) and aromatic diamines. PVgA is chosen as the polymer backbone owing to its high flexibility and facile synthesis using an ecofriendly water solvent. Subsequently, an aromatic diamine is employed as a cross-linker to construct a robust amide network that features a resonance-stabilized high modulus and enhanced adhesion. Comparative investigations of three cross-linkers, 2,2'-bis(trifluoromethyl)benzidine, 3,3'-oxidianiline, and 4,4'-oxybis[3-(trifluoromethyl)aniline] (TFODA), highlight the roles of the trifluoromethyl group (-CF3) and the ether linkage. Consequently, PVgA cross-linked with TFODA (PVgA-TFODA), featuring both -CF3 and -O-, establishes a well-balanced 3D network characterized by heightened elasticity and improved binding forces. The optimized Si and SiOx/graphite composite electrodes with the PVgA-TFODA binder demonstrate impressive structural stability and stable cycling. This study offers a novel perspective on designing cross-linked network binders, showcasing the benefits of a multidimensional approach considering chemical and physical interactions.
Collapse
Affiliation(s)
- Seoha Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Yeongseok Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang 37673, Republic of Korea
| | - So Hyeon Kim
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye Bin Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Dong-Yeob Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Yun Ho Kim
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jongmin Park
- Advanced Functional Polymers Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Soojin Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Li J, Yang K, Zheng Y, Gao S, Chai J, Lei X, Zhan Z, Xu Y, Chen M, Liu Z, Guo Q. Water-Soluble Polyamide Acid Binder with Fast Li + Transfer Kinetics for Silicon Suboxide Anodes in Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:30302-30311. [PMID: 37337474 PMCID: PMC10317022 DOI: 10.1021/acsami.3c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Silicon suboxide (SiOx) anodes have attracted considerable attention owing to their excellent cycling performance and rate capability compared to silicon (Si) anodes. However, SiOx anodes suffer from high volume expansion similar to Si anodes, which has been a challenge in developing suitable commercial binders. In this study, a water-soluble polyamide acid (WS-PAA) binder with ionic bonds was synthesized. The amide bonds inherent in the WS-PAA binder form a stable hydrogen bond with the SiOx anode and provide sufficient mechanical strength for the prepared electrodes. In addition, the ionic bonds introduced by triethylamine (TEA) induce water solubility and new Li+ transport channels to the binder, achieving enhanced electrochemical properties for the resulting SiOx electrodes, such as cycling and rate capability. The SiOx anode with the WS-PAA binder exhibited a high initial capacity of 1004.7 mAh·g-1 at a current density of 0.8 A·g-1 and a capacity retention of 84.9% after 200 cycles. Therefore, WS-PAA is a promising binder for SiOx anodes compared with CMC and SA.
Collapse
Affiliation(s)
- Jian Li
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
- Hubei
Key Laboratory of Plasma Chemistry and Advanced Materials, School
of Materials Science and Engineering, Wuhan
Institute of Technology, Wuhan 430205, China
| | - Kai Yang
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Yun Zheng
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Shuyu Gao
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Jingchao Chai
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Xiaohua Lei
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Zhuo Zhan
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Yuanjian Xu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Maige Chen
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Zhihong Liu
- Key
Laboratory of Optoelectronic Chemical Materials and Devices (Ministry
of Education), Jianghan University, Wuhan 430056, China
| | - Qingzhong Guo
- Hubei
Key Laboratory of Plasma Chemistry and Advanced Materials, School
of Materials Science and Engineering, Wuhan
Institute of Technology, Wuhan 430205, China
| |
Collapse
|