1
|
Song C, Yang J, Ren S, Kannan SK, Liu S, Xing R. Electrocatalytic synergy from Ni-enhanced WS 2 for alkaline overall water splitting with tuning electronic structure and crystal phase transformation. J Colloid Interface Sci 2025; 685:804-812. [PMID: 39864390 DOI: 10.1016/j.jcis.2025.01.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Due to the limited active sites and poor conductivity, the application of tungsten disulfide (WS2) in alkaline water electrolysis remains a challenge. Herein, Ni-WS2 nanosheet arrays were in situ grown on the carbon fiber paper (Ni-WS2/CFP) as an electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media, and the introduction degree of Ni can be regulated by adjusting the electrodeposition time. When the electrodeposition time is 3 min, Ni ions are doped into the lattice of WS2, and by prolonging the electrodeposition time to 10 min, the nickel disulfide (NiS2) crystal phase is generated to form NiS2@WS2 heterojunction. The optimized Ni-WS2/CFP-10 min catalyst requires the overpotentials of 65 mV for HER and 251 mV for OER to achieve the current density of 10 mA cm-2. A two-electrode water electrolysis device employing the Ni-WS2/CFP-10 min electrocatalyst requires a cell voltage of 1.63 V at the current density of 10 mA cm-2. This work provides a new perspective for enhancing the electrocatalytic performance of WS2-based electrocatalysts by introducing heteroatoms and constructing heterojunction.
Collapse
Affiliation(s)
- Chenyu Song
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China
| | - Jishuang Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China
| | - Shuangting Ren
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China
| | - Shree Kesavan Kannan
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China
| | - Shanhu Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, PR China
| | - Ruimin Xing
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Energy Science and Technology, Henan University, Zhengzhou 450046, PR China.
| |
Collapse
|
2
|
Song K, Yang D, Zhou C, Li Q, Zhang L, Gong J, Zhong W, Shen S, Chen S. CoPS/Co 4S 3 Heterojunction with Highly Exposed Active Sites and Dual-site Synergy for Effective Hydrogen Evolution Reactions. Chemistry 2024; 30:e202401038. [PMID: 38775655 DOI: 10.1002/chem.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
Cobalt phosphosulphide (CoPS) has recently been recognized as a potentially effective electrocatalyst for the hydrogen evolution reaction (HER). However, there have been no research on the design of CoPS-based heterojunctions to boost their HER performance. Herein, CoPS/Co4S3 heterojunction was prepared by phosphating treatment based on defect-rich flower-like Co1-xS precursors. The high specific surface area of nanopetals, together with the heterojunction structure with inhomogeneous strain, exposes more active sites in the catalyst. The electronic structure of the catalyst is reconfigured as a result of the interfacial interactions, which promote the catalyst's ability to adsorb hydrogen and conduct electricity. The synergistic effect of the Co and S dual-site further enhance the catalytic activity. The catalyst has overpotentials of 61 and 70 mV to attain a current density of 10 mA cm-2 in acidic and alkaline media, respectively, which renders it competitive with previously reported analogous catalysts. This work proposes an effective technique for constructing transition metal phosphosulfide heterojunctions, as well as the development of an efficient HER electrocatalyst.
Collapse
Affiliation(s)
- Kai Song
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Dian Yang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Chenjing Zhou
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Qingao Li
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Lili Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Junjie Gong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Wenwu Zhong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Shijie Shen
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Shichang Chen
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
| |
Collapse
|
3
|
Abedi M, Rezaee S, Shahrokhian S. Designing core-shell heterostructure arrays based on snowflake NiCoFe-LTH shelled over W 2N-WC nanowires as an advanced bi-functional electrocatalyst for boosting alkaline water/seawater electrolysis. J Colloid Interface Sci 2024; 666:307-321. [PMID: 38603874 DOI: 10.1016/j.jcis.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
The pursuit of efficient and sustainable hydrogen production through water splitting has led to intensive research in the field of electrocatalysis. However, the impediment posed by sluggish reaction kinetics has served as a significant barrier. This challenge has inspired the development of electrocatalysts characterized by high activity, abundance in earth's resources, and long-term stability. In addressing this obstacle, it is imperative to meticulously fine-tune the structure, morphology, and electronic state of electrocatalysts. By systematically manipulating these key parameters, the full potential of electrocatalysts can unleash, enhancing their catalytic activity and overall performance. Hence in this study, a novel heterostructure is designed, showcasing core-shell architectures achieved by covering W2N-WC nanowire arrays with tri-metallic Nickel-Cobalt-Iron layered triple hydroxide nanosheets on carbon felt support (NiCoFe-LTH/W2N-WC/CF). By integrating the different virtue such as binder free electrode design, synergistic effect between different components, core-shell structural advantages, high exposed active sites, high electrical conductivity and heterostructure design, NiCoFe-LTH/W2N-WC/CF demonstrates striking catalytic performances under alkaline conditions. The substantiation of all the mentioned advantages has been validated through electrochemical data in this study. According to these results NiCoFe-LTH/W2N-WC/CF achieves a current density of 10 mA cm-2 needs overpotential values of 101 mV for HER and 206 mV for OER, respectively. Moreover, as a bi-functional electrocatalyst for overall water splitting, a two-electrode device needs a voltage of 1.543 V and 1.569 V to reach a current density of 10 mA cm-2 for alkaline water and alkaline seawater electrolysis, respectively. Briefly, this research with attempting to combination of different factors try to present a promising stride towards advancing bi-functional catalytic activity with tailored architectures for practical green hydrogen production via electrochemical water splitting process.
Collapse
Affiliation(s)
- Mohsen Abedi
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Sharifeh Rezaee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| |
Collapse
|
4
|
Wang R, Chen Q, Liu X, Hu Y, Cao L, Dong B. Synergistic Effects of Dual-Doping with Ni and Ru in Monolayer VS 2 Nanosheet: Unleashing Enhanced Performance for Acidic HER through Defects and Strain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311217. [PMID: 38396321 DOI: 10.1002/smll.202311217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Amidst the escalating quest for clean energy, the hydrogen evolution reaction (HER) in acidic conditions has taken center stage, catalyzing the search for advanced electrocatalysts. The efficacy of these materials is predominantly dictated by the active site density on their surfaces. The propensity is leveraged for monolayer architectures to introduce defects, enhancing surface area, and increasing active sites. Doping enhances defects and fine-tunes catalyst activity. In this vein, defect-enriched monolayer nanosheets doped with nickel and a trace amount of ruthenium in VS2 (SL-Ni-Ru-VS2) are engineered and characterized. Evaluation in 0.5 m H2SO4 solution unveils that the catalyst achieves overpotentials as low as 20 and 41 mV at current densities of -10 and -100 mA cm⁻2. Impressively, the catalyst maintains a mass activity of 13.08 A mg⁻¹Ru, even with minimal Ru incorporation, indicating exceptional catalytic efficiency. This monolayer catalyst sustains its high activity at lower overpotentials, demonstrating its practical applicability. The comprehensive analysis, which combines experimental data and computational simulations, indicates that the co-doping of Ni and Ru enhances the electrocatalytic properties of VS2. This research offers a strategic framework for crafting cutting-edge electrocatalysts specifically designed for enhanced performance in the HER.
Collapse
Affiliation(s)
- Ruonan Wang
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Qian Chen
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Yubin Hu
- Marine Science and Technology, Shandong University, 72 Coastal Highway, Qingdao, 266237, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| |
Collapse
|
5
|
Liu C, Sun S, Hou Q, Song Y, Wang H, Ji Y, Zhao Y, Zhang H, Xu Y. Overall Spontaneous Water Splitting for Calcium Bismuthate Ca(BiO 2) 2: Flexible-Electronic-Controlled Band Edge Position and Adsorption-Site-Modulated Bond Strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38291780 DOI: 10.1021/acs.langmuir.3c03092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Eco-friendly photocatalysts for water splitting, highly efficient in oxygen/hydrogen evolution reactions, hold great promise for the storage of inexhaustible solar energy and address environmental challenges. However, current common photocatalysts rarely exhibit both H2 and O2 production performances unless some regulatory measures, such as strain engineering, are implemented. Additionally, the extensive utilization of flexible electronics remains constrained by their high Young's modulus. Herein, on the basis of density functional theory calculations, we identify a novel spontaneous oxygen-producing two-dimensional Ca(BiO2)2 material, which can efficiently regulate the electronic structures of the surface active sites, optimize the reaction pathways, reduce the reaction energy barriers, and boost the overall water-splitting activity through biaxial strain modulation. In detail, an unstrained Ca(BiO2)2 monolayer not only possesses a suitable band gap value (2.02 eV) to fulfill the photocatalytic water-splitting band edge relationships but also holds favorable transport properties, excellent optical absorption across the visible light spectrum, and spontaneous oxygen production under neutral conditions. More excitingly, under application of a 7% biaxial tensile strain modulation with an ideal biaxial strength of 32.35 GPa nm, the Ca(BiO2)2 monolayer not only maintains its structural integrity but also exhibits a completely spontaneous reaction for photocatalytic hydrogen precipitation with superior optical absorption. This can primarily be attributed to the substantial reduction of the potential barrier through strain engineering as well as the weakening of bond energy resulting from changes of the adsorption site as calculated by crystal orbital Hamiltonian population analysis. This flexible stretchable electronic modulated the photocatalyst behavior and bond energy of O-Bi and O-Ca interactions, offering outstanding potential for photocatalytic water spontaneous oxygen and hydrogen evolution among all of the reported metal oxides, and is more likely to become a promising candidate for future flexible electronic devices.
Collapse
Affiliation(s)
- Chang Liu
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Songsong Sun
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Qingmeng Hou
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Yaning Song
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Hongjing Wang
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Yanju Ji
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Yingbo Zhao
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| | - Hao Zhang
- Key Laboratory for Information Science of Electromagnetic Waves (MOE), Key Laboratory of Micro and Nano Photonic Structures (MOE), and Department of Optical Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu, Zhejiang 322000, People's Republic of China
| | - Yuanfeng Xu
- School of Science, Shandong Jianzhu University, Jinan, Shandong 250101, People's Republic of China
| |
Collapse
|
6
|
Yu X, Li Y, Fang T, Gao J, Ma Y. Interfacial and Electronic Modulation of W Bridging Heterostructure Between WS 2 and Cobalt-Based Compounds for Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304512. [PMID: 37653588 DOI: 10.1002/smll.202304512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Indexed: 09/02/2023]
Abstract
The development of high performance electrocatalysts for effective hydrogen production is urgently needed. Herein, three hybrid catalysts formed by WS2 and Co-based metal-organic frameworks (MOFs) derivatives are constructed, in which the small amount of W in the MOFs derivatives acts as a bridge to provide the charge transfer channel and enhance the stability. In addition, the effects of the surface charge distribution on the catalytic performance are fully investigated. Due to the optimal interfacial electron coupling and rearrangement as well as its unique porous morphology, WS2 @W-CoPx exhibits superior bifunctional performance in alkaline media with low overpotentials in hydrogen evolution reaction (HER) (62 mV at 10 mA cm-2 ) and oxygen evolution reaction (OER) (278 mV at 100 mA cm-2 ). For overall water splitting (OWS), WS2 @W-CoPx only requires a cell voltage of 1.78 V at 50 mA cm-2 and maintains good stability within 72 h. Density functional theory calculations verify that the combination of W-CoPx with WS2 can effectively enhance the activity of OER and HER with weakened OH (or O) adsorption and enhanced H atom adsorption. This work provides a feasible idea for the design and practical application of WS2 or phosphide-based catalysts in OWS.
Collapse
Affiliation(s)
- Xin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yaxin Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tingting Fang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Juan Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yurong Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|