1
|
He S, Wang Y, Wang T, Wu D, La J, Hu J, Zheng Y, Lv F, Huang Y, Wang W. Modulating Polarization in Second Harmonic Generation through Symmetry Evolution in Plasmonic Lattices. ACS NANO 2024; 18:8745-8753. [PMID: 38477519 DOI: 10.1021/acsnano.3c11312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
We report a strategy for preparing cost-effective plasmonic square lattices with tunable unit structures of circles, crosses, and circle-cross pairs on a centimeter scale. The asymmetrical electromagnetic (EM) field distribution of the lattice enhances second harmonic generation (SHG) under oblique incidence. The SHG signals are progressively strengthened as the unit symmetry decreases from C∞v (circle) to C4v (cross) to C2v (circle-cross pair). The peak SHG signal is observed from the plasmonic lattice with a circle-cross pair, showcasing a conversion efficiency of 1.0 × 10-2, which is a 7.3-fold enhancement relative to the dielectric lattice comprised of circle units. This notably high conversion efficiency of SHG is on par with that of phase-matched bulk nanostructures under normal incidence, benefiting from the Bloch-surface plasmon polariton (Bloch-SPP) modes associated with the distribution of the photonic local density of states (LDOS). Furthermore, the SHG emission exhibits distinctive directional and polarization characteristics as the unit symmetry is reduced. This work offers valuable insights into a structural symmetry-dependent SHG in plasmonic lattices and the way forward for the design of functional nonlinear plasmonic devices.
Collapse
Affiliation(s)
- Shijia He
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yi Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Tianyu Wang
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Dongda Wu
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Junqiao La
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiang Hu
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yan Zheng
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Fanzhou Lv
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yudie Huang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Wenxin Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| |
Collapse
|
2
|
Li R, Liang Y, Wei H, Zhang H, Kurilkina S, Peng W. Dynamic Spectral Modulation Enabled by Conductive Polymer-Integrated Plasmonic Nanodisk-Hole Arrays. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38047552 DOI: 10.1021/acsami.3c10853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The electrically driven optical performance modulation of the plasmonic nanostructure by conductive polymers provides a prospective technology for miniaturized and integrated active optoelectronic devices. These features of wafer-scale and flexible preparation, a wide spectrum adjustment range, and excellent electric cycling stability are critical to the practical applications of dynamic plasmonic components. Herein, we have demonstrated a large-scale and flexible active plasmonic nanostructure constructed by electrochemically synthesizing nanometric-thickness conductive polymer onto spatially mismatched Au nanodisk-hole (AuND-H) array on the poly(ethylene terephthalate) (PET) substrate, offering low-power electrically driven switching of reflective light in a wide wavelength range of 550-850 nm. The composite structure of the polymer/AuND-H array supports multiple plasmonic resonance modes with strong near-field enhancement and confinement, which provides an excellent dynamic spectral modulation platform. As a result, the PPy/AuND-H array achieves 18.4% reversible switching of spectral intensity at 780 nm and speedy response time, as well as maintains a stable dynamic modulation range at two-potential cycling between -0.6 and 0.1 V after 200 modulation cycles. Compared to the case of the PPy/AuND-H array, the PANI/AuND-H array obtains a more extensive intensity modulation of 25.1% at 750 nm, which is attributed to the significant differences in the extinction coefficient between the oxidized and reduced states of PANI, but its modulation range degrades apparently after 20 cycles driven at applied voltages between -0.1 and 0.8 V. Additionally, the cycling stability could be further improved by reducing the modulation voltage range. Our proposed electromodulated composite structure provides a promising technological proposal for dynamically plasmonic reconfigurable devices.
Collapse
Affiliation(s)
- Rui Li
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yuzhang Liang
- School of Physics, Dalian University of Technology, Dalian 116024, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Haonan Wei
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hui Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Svetlana Kurilkina
- Belarusian State University, Minsk 220030, Belarus
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian 116024, China
- DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Wu D, Wang Y, Xiao J, Hu J, Zhao X, Gao Y, Yuan J, Wang W. Surface lattice resonances enhanced directional amplified spontaneous emission on plasmonic honeycomb nanocone array. Phys Chem Chem Phys 2023; 25:26847-26852. [PMID: 37782475 DOI: 10.1039/d3cp03718e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Plasmonic arrays have emerged as a promising platform for investigating light-matter interactions enhanced by surface lattice resonance (SLR) at the nanoscale, which exhibit superior properties in localized field enhancement, narrow linewidth, and effective radiation loss suppression. In this study, an Al nanocone array in a honeycomb arrangement served as an optical cavity with a tip effect to realize the directional and polarized amplified spontaneous emission (ASE) of R6G. Based on the optical feedback between the degenerated SLR mode of high local density of states (LDOS) and the emission of gain media, 140-fold enhanced ASE was observed at an emission angle of 25° under TM polarization when the pump power density exceeded the threshold of 197.8 W cm-2. Moreover, polarization-resolved iso-frequency images indicated that a specific polarization dependence of ASE was modulated by the SLR mode. This study clarifies the interaction between the gain media and plasmonic system, which is beneficial for the generation of nanolasing with directional emission and lays a foundation for the plasmonic device.
Collapse
Affiliation(s)
- Dongda Wu
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yi Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiamin Xiao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiang Hu
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Xuchao Zhao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yuhao Gao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiazhi Yuan
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Wenxin Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| |
Collapse
|