1
|
Chen S, Lan W, Yang D, Xu J, Hu Y, Lin H, Feng L. Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and Ag 2S/SnS 2 photoanode for ultrasensitive dimethoate sensing. Anal Chim Acta 2025; 1337:343556. [PMID: 39800512 DOI: 10.1016/j.aca.2024.343556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/15/2024] [Indexed: 05/02/2025]
Abstract
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues. The expensive equipment and complex operations for current detection methods greatly limit their practical applications. Herein, a self-powered photoelectrochemical (PEC) sensing platform based on Ag2S/SnS2 photoanode, iron-doped cobalt borate (CBFO) photocathode, and molecularly imprinted polymers (MIPs) was proposed for the detection of DIM. The molecularly imprinted polymers at CBFO photocathode endow the self-powered PEC sensor with high selectivity. The Ag2S/SnS2 photoanode enhances the efficient of electron transfer between the photoanode and photocathode, contributing to the high sensitivity of PEC sensor. The self-powered molecularly imprinted PEC sensor exhibits outstanding sensitivity and selectivity for DIM at concentrations from 1 × 10-2 to 1 × 105 nM with a detection limit of 5.9 pM. Excellent recoveries (95.4 ± 2.6 %, 98.4 ± 2.3 %, 106.3 ± 3.3 %) were achieved in spiked crown pear samples, indicating that the molecularly imprinted PEC sensor is capable of detecting DIM in real samples. This research provides a novel simple, fast, highly selective and sensitive self-powered molecularly imprinted photoelectrochemical sensing platform for detection of DIM. The fabricated PEC sensor offers a promising candidate for the detection method of organophosphorus pesticides residues, which is of great significance for the fields of food safety and environmental protection.
Collapse
Affiliation(s)
- Shuqin Chen
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of' Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Wanfu Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China
| | - Dapeng Yang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of' Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, PR China; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266024, PR China.
| | - Jingying Xu
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of' Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Yikun Hu
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of' Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, PR China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, PR China.
| | - Liang Feng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Zheng X, Shi Z, Han C, Mu H, Cheng S, Yan X. Convenient in situ self-assembled formation of dual-functional Ag/MXene nanozymes for efficient chemiluminescence sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8324-8332. [PMID: 39526932 DOI: 10.1039/d4ay00584h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MXenes are attracting increasing interest as a low-cost carrier for the development of nanozymes with enhanced peroxidase or oxidase-like activity. In this work, silver nanoparticles (AgNPs) were synthesized and loaded on Ti3C2 MXene nanosheets (denoted as Ag/MXene) by a simple method, using MXene as a support and reducing agent. The synthesized Ag/MXene composites exhibited satisfactory stability and the peroxidase activity was higher than that of the single components. In the presence of luminol and hydrogen peroxide (H2O2), Ag/MXene could catalyze H2O2 to produce reactive oxygen species (ROS) and act on luminol to generate strong chemiluminescent (CL) signals. Free radical scavenging experiments and electron paramagnetic resonance spectroscopy confirmed the production of these radicals. In this regard, we fabricated a facile biosensor for glutathione (GSH) and uric acid (UA) detection and the results showed good linear relationship between GSH and UA. The linear ranges of GSH and UA were 50 nM to 20 μM and 1 μM to 35 μM, respectively, with low detection limits of 0.83 nM and 0.37 μM. The sensor platform established in this study provides the possibility for developing MXene biosensors with high sensitivity and performance, and lays the solid foundation for expanding the application of MXene in biosensors.
Collapse
Affiliation(s)
- Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute of Nanchang University, Chongqing 402660, China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chun Han
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Centre for Disease Control and Prevention, Nanchang, P. R. China, 330038
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiluan Yan
- College of Pharmacy, Nanchang University, Nanchang 330031, China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Wang R, Zhang W, Liang W, Wang X, Li L, Wang Z, Li M, Li J, Ma C. Molecularly Imprinted Heterostructure-Assisted Laser Desorption Ionization Mass Spectrometry Analysis and Imaging of Quinolones. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17377-17392. [PMID: 38551391 DOI: 10.1021/acsami.3c16277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Quinolone residues resulting from body metabolism and waste discharge pose a significant threat to the ecological environment and to human health. Therefore, it is essential to monitor quinolone residues in the environment. Herein, an efficient and sensitive matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) method was devised by using a novel molecularly imprinted heterojunction (MIP-TNs@GCNs) as the matrix. Molecularly imprinted titanium dioxide nanosheets (MIP-TNs) and graphene-like carbon nitrides (GCNs) were associated at the heterojunction interface, allowing for the specific, rapid, and high-throughput ionization of quinolones. The mechanism of MIP-TNs@GCNs was clarified using their adsorption properties and laser desorption/ionization capability. The prepared oxygen-vacancy-rich MIP-TNs@GCNs heterojunction exhibited higher light absorption and ionization efficiencies than TNs and GCNs. The good linearity (in the quinolone concentration range of 0.5-50 pg/μL, R2 > 0.99), low limit of detection (0.1 pg/μL), good reproducibility (n = 8, relative standard deviation [RSD] < 15%), and high salt and protein resistance for quinolones in groundwater samples were achieved using the established MIP-TNs@GCNs-MALDI/MS method. Moreover, the spatial distributions of endogenous compounds (e.g., amino acids, organic acids, and flavonoids) and xenobiotic quinolones from Rhizoma Phragmitis and Rhizoma Nelumbinis were visualized using the MIP-TNs@GCNs film as the MALDI/MS imaging matrix. Because of its superior advantages, the MIP-TNs@GCNs-MALDI/MS method is promising for the analysis and imaging of quinolones and small molecules.
Collapse
Affiliation(s)
- Ruya Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Weiqiang Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province 250014, P. R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Lili Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Zhenhua Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Miaomiao Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Jun Li
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 1007002, China
| |
Collapse
|
4
|
Pei J, Zhao Y, Zhang S, Yu X, Tian Z, Sun Y, Ma S, Zhao RS, Meng J, Chen X, Chen F. A Surface Matrix of Au NPs Decorated Graphdiyne for Multifunctional Laser Desorption/Ionization Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37909321 DOI: 10.1021/acsami.3c08962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The development of the valid strategy to enhance laser desorption/ionization efficiency gives rise to widespread concern in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) technology. Herein, a hybrid of Au NP-decorated graphdiyne (Au/GDY) was fabricated and employed as the SALDI-MS matrix for the first time, and a mechanism based on photothermal and photochemical energy conversions was proposed to understand LDI processes. Given theoretical simulations and microstructure characterizations, it was revealed that the formation of a coupled thermal field and internal electric field endow the as-prepared Au/GDY matrix with superior desorption and ionization efficiency, respectively. Moreover, laser-induced matrix ablation introduced strain and defect level into the Au/GDY hybrid, suppressing the recombination of charge carriers and thereby facilitating analyte ionization. The optimized Au/GDY matrix allowed for reliable detection of trace sulfacetamide and visualization of exogenous/endogenous components in biological tissues. This work offers an integrated solution to promote LDI efficiency based on collaborative photothermal conversion and internal electric field, and may inspire the design of novel semiconductor-based surface matrices.
Collapse
Affiliation(s)
- Jingxuan Pei
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yanfang Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Shuting Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zhenfei Tian
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yibo Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ru-Song Zhao
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jianping Meng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiangfeng Chen
- Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fang Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
5
|
Zhao Y, Boukherroub R, Liu L, Li H, Zhao RS, Wei Q, Yu X, Chen X. Boron nitride quantum dots-enhanced laser desorption/ionization mass spectrometry analysis and imaging of bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132336. [PMID: 37597390 DOI: 10.1016/j.jhazmat.2023.132336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Bisphenol A (BPA) displays harmful effects on the human health, including potent endocrine activity and potential impact on the development of cancer. Analysis BPA residues in water and plastic products attracted considerable attention in the past decades. However, dominantly used conventional analysis techniques are unable to directly and non-destructively identify the correct species of BPA in plastic products. Hence, this study demonstrates the effective utilisation of boron nitride quantum dots (BNQDs) as an inorganic matrix in matrix-assisted laser desorption/ionization mass spectrometry analysis and imaging (MALDI-MS & MSI) for BPA. The presence of abundant hydroxyl and amino groups on the BNQDs' surface is favourable for the formation of hydrogen bonds with BPA, and increases their ionization and chemoselectivity. Intriguingly, the BNQDs matrix offers a distinct signal for phenolic hazardous molecules featuring different hydroxyl groups. The method was applied to detect BPA at nanomolar level in environmental water, and also allowed non-destructive and in situ mapping of BPA in plastics and pacifiers. This research provides a novel strategy for adapting nanomaterials as inorganic matrices for analysis of small molecular pollutants in environmentally relevant samples using MALDI-MS & MSI.
Collapse
Affiliation(s)
- Yanfang Zhao
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Lu Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Huizhi Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Ru-Song Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China
| | - Qin Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiang Yu
- Beijing Key Laboratory of Materials Utilisation of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, PR China.
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, PR China.
| |
Collapse
|