1
|
Islam MM, Abu Nayem SM, Shah SS, Islam MZ, Aziz MA, Saleh Ahammad AJ. Electrochemical Selective Nitrate Reduction: Pathways to Nitrogen and Ammonia Production. CHEM REC 2025; 25:e202400206. [PMID: 39715734 DOI: 10.1002/tcr.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Nitrate (NO3 -) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO3 - remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO3 -reduction (ECNR) offers a sustainable alternative, converting NO3 - into environmentally benign nitrogen (N2) or valuable ammonia (NH3). This review explores recent advancements in selective ECNR pathways for NO3 --to-N2and NO3 --to-NH3 conversion, focusing on mechanistic insights, electrocatalyst development, and optimization strategies. Key factors influencing ECNR performance, such as electrode materials, electrolyte composition, and hydrogen evolution inhibition, are discussed. Additionally, the review highlights the role of single-atom, bimetallic, and nanostructured catalysts in enhancing faradaic efficiency, total N2 removal, and selectivity, with particular attention to Pd-Cu systems. Strategies to address challenges like low selectivity and catalyst degradation are also explored. This review underscores the potential of ECNR as a viable alternative to the energy-intensive Haber-Bosch process for NH3 production, aligning with global sustainability goals. Finally, we identify research gaps and propose future directions for improving the efficiency, stability, and scalability of ECNR technologies.
Collapse
Affiliation(s)
- Md Monjorul Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Socio-Environmental Energy Science Department, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Md Zahidul Islam
- Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
2
|
Lin P, Zhao F, Ren X, Lu Y, Dong X, Gao L, Ma T, Bao J, Liu A. Recent progress on Ti-based catalysts in the electrochemical synthesis of ammonia. NANOSCALE 2024; 16:17300-17323. [PMID: 39240163 DOI: 10.1039/d4nr02852j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Electrochemical ammonia synthesis presents a sustainable alternative, offering the potential for enhanced energy efficiency and environmental benefits compared to the conventional Haber-Bosch process. In recent years, the electrocatalytic reduction of nitrate to ammonia (NO3-RR) has emerged as a crucial approach for achieving sustainable NH3 production. To enhance energy efficiency and successfully convert NO3- to NH3, it is essential to investigate cost-effective electrocatalysts that provide high Faraday efficiency and demonstrate adequate stability. Ti-based materials are considered ideal candidates as catalysts due to their environmental friendliness and robust stability. This review initially summarizes the nitrate reduction reaction pathway and concisely discusses the impact of the potential intermediates and reaction steps on the overall reaction efficiency and product selectivity. Subsequently, an overview of the fundamental characteristics of Ti and TiO2 is presented. Additionally, the research process on Ti-based electrocatalysts in the electrochemical reduction of nitrate for ammonia synthesis is summarized. Finally, the design strategies, such as heteroatom doping and the introduction of oxygen vacancies, to enhance catalytic efficiency and selectivity are presented. Through this comprehensive review, we endeavor to furnish researchers with the most recent insights into the application of titanium-based electrocatalysts in nitrate reduction reactions and to stimulate innovative thought processes on the electrocatalytic synthesis of ammonia.
Collapse
Affiliation(s)
- Peiyan Lin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yumeng Lu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xiaoying Dong
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China.
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Tingli Ma
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
| | - Junjiang Bao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
3
|
Zhou S, Dai Y, Song Q, Lu L, Yu X. Efficient Electrochemical Nitrate Removal by Ordered Ultrasmall Intermetallic AuCu 3 via Enhancing Nitrate Adsorption. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38605516 DOI: 10.1021/acsami.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Developing a high-performance electrocatalyst for synthesizing ammonia from nitrate represents a promising solution for addressing wastewater pollution and achieving sustainable ammonia production. However, it remains a formidable challenge. Herein, an intermetallic AuCu3 electrocatalyst with high-density active sites is designed and prepared for an efficient nitrate electroreduction to generate ammonia. Remarkably, the Faraday efficiency and yield rate of ammonia at -0.9 V are 97.6% and 75.9 mg h-1 cm-2, respectively. More importantly, after 10 cycles of testing, the removal rate of nitrate can still reach 95.2%. Electrochemical in situ Fourier transform infrared analysis indicates that AuCu3 IM can promote the adsorption of nitrate and enhance ammonia production from nitrate. *NH3, *NO, and *NO2 have been proven to be active intermediates. Theoretical and experimental studies show that the Au site can provide a large amount of *H for nitrate reduction, and the Cu site is conducive to the reduction of nitrate to produce nitrogen-containing products. Meanwhile, AuCu3 intermetallic compounds (AuCu3 IM) can inhibit the dimerization of *H. The power density and ammonia yield of the assembled Zn-nitrate battery reached 2.17 mW cm-2 and 71.2 mg h-1 cm-2, respectively.
Collapse
Affiliation(s)
- Shuanglong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| | - Yu Dai
- School of Foreign Languages, Qingdao City University, Qingdao 266042, China
| | - Qiang Song
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lina Lu
- School of Business, Shandong University of Technology, Zibo 255000, China
| | - Xiao Yu
- School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
4
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 88] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Hai Y, Li X, Cao Y, Wang X, Meng L, Yang Y, Luo M. Ammonia Synthesis via Electrocatalytic Nitrate Reduction Using NiCoO 2 Nanoarrays on a Copper Foam. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11431-11439. [PMID: 38382004 DOI: 10.1021/acsami.3c16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Ammonia (NH3) plays a vital role in industrial and agricultural development. The electrocatalytic nitrate reduction reaction (eNO3RR) is an effective method to produce NH3 under environmental conditions but also requires considerably active and selective electrocatalysts. Herein, a copper foam was used as a conductive substrate for the electrode materials. Specifically, a Co metal-organic framework (Co-MOF) was in situ grown on the copper foam, etched, and calcined to form NiCoO2@Cu nanosheets, which were used as cathode electrodes for the eNO3RR. In 0.1 M Na2SO4 with 0.1 M NaNO3 electrolyte, NiCoO2@Cu nanosheets realized an NH3 yield of 5940.73 μg h-1 cm-2 at -0.9 V vs reversible hydrogen electrode (RHE), with a Faradaic efficiency of 94.2% at -0.7 V vs RHE. After 33 h of the catalytic reaction, the selectivity of NH3-N increased to 99.7%. The excellent electrocatalytic performance of NiCoO2@Cu nanosheets was attributed to the apparent synergistic effect between the Ni atoms and the Co atoms of bimetallic materials. This study shows that the Ni doping of NiCoO2@Cu nanosheets effectively facilitated the adsorption of NO3- on NiCoO2@Cu, and it promoted the eNO3RR.
Collapse
Affiliation(s)
- Yan Hai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Xinyan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Linghu Meng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Yang Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| |
Collapse
|
6
|
Li J, Wang B, Wang H, Jia J, Zhang J, Zhang L, Tu M, Li H, Xu C. Ru-Doped Ultrasmall Cu Nanoparticles Decorated with Carbon for Electroreduction of Nitrate to Ammonia. Inorg Chem 2024; 63:3955-3961. [PMID: 38334267 DOI: 10.1021/acs.inorgchem.3c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Electrocatalytic nitrate reduction reaction offers a sustainable approach to treating wastewater and synthesizing high-value ammonia under ambient conditions. However, electrocatalysts with low faradaic efficiency and selectivity severely hinder the development of nitrate-to-ammonia conversion. Herein, Ru-doped ultrasmall copper nanoparticles loaded on a carbon substrate (Cu-Ru@C) were fabricated by the pyrolysis of Cu-BTC metal-organic frameworks (MOFs). The Cu-Ru@C-0.5 catalyst exhibits a high faradaic efficiency (FE) of 90.4% at -0.6 V (vs RHE) and an ammonia yield rate of 1700.36 μg h-1mgcat.-1 at -0.9 V (vs RHE). Moreover, the nitrate conversion rate is almost 100% over varied pHs (including acid, neutral, and alkaline electrolytes) and different nitrate concentrations. The remarkable performance is attributed to the synergistic effect between Cu and Ru and the excellent conductivity of the carbon substrate. This work will open an exciting avenue to exploring MOF derivatives for ambient ammonia synthesis via selective electrocatalytic nitrate reduction.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Binglei Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huijiao Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinzhi Jia
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jinhua Zhang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Lanyue Zhang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mudong Tu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hua Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|