1
|
Gou L, Liang K, Wang W, Yang Z, Zhu L, Ma Y, Li H, Zhang Z, Fan XY. Robust zincophilic-hydrophobic protection layer induces preferential growth of (0 0 2) crystal plane towards ultra-stable Zn anode. J Colloid Interface Sci 2025; 686:764-775. [PMID: 39922166 DOI: 10.1016/j.jcis.2025.01.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
The practical deployment of aqueous zinc-ion batteries (AZIBs) in large-scale energy storage applications is hampered by short cycle lifespans and limited zinc utilization due to uncontrollable dendrite growth and water-induced side reactions. Herein, we propose an environmentally friendly electrolyte additive, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), which features dual zincophilic sites and a hydrophobic group, to enhance Zn stability. Theoretical calculations and experimental characterizations demonstrate that AMPS can firmly adsorb onto the Zn (0 0 2) plane through its dual zincophilic sites (SO3H and NHCO), while the CC hydrophobic group orients toward the electrolyte, ultimately forming a stable zincophilic/hydrophobic interface on the Zn electrode in situ. This unique structure not only inhibits water-induced side hydrogen evolution reactions but also induces preferential deposit propagation along the (0 0 2) crystal plane. Benefiting from this synergetic effect, the Zn//Cu asymmetric cell with AMPS electrolyte maintains an ultrahigh average coulombic efficiency of 99.8 % for over 2500 cycles at 2 mA cm-2, achieving 1 mAh cm-2. Furthermore, the Zn//MnO2 full cell shows a high-capacity retention of 67.7 % at 1.8 A g-1 after 1000 cycles, confirming the effectiveness of the AMPS additive in improving the cyclability and performance of AZIBs.
Collapse
Affiliation(s)
- Lei Gou
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| | - Kai Liang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Wei Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Zheqi Yang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Lin Zhu
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Yue Ma
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, China.
| | - Hui Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Zizhuo Zhang
- Information and Network Management Division, Chang'an University, Xi'an 710061, China
| | - Xiao-Yong Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| |
Collapse
|
2
|
Liu Y, Liu Z, Xiao Z, Lao Z, Liu J, Xiao X, Fu Q, Zheng F, Zhou G. Suppressing Spontaneous Acidic Corrosion and Hydrogen Evolution for Stable Zn//MnO 2 Batteries. Angew Chem Int Ed Engl 2025; 64:e202502896. [PMID: 40079688 DOI: 10.1002/anie.202502896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/15/2025]
Abstract
Rechargeable aqueous Zn//MnO2 batteries have attracted significant attention due to their high safety and cost-effective for potential large-scale energy storage. However, the severe acidic corrosion and hydrogen evolution reaction (HER) on Zn anodes in acidic electrolytes pose critical challenges to their practical application. Here, we introduce trace amounts of p-hydroxybenzaldehyde (M4) into the electrolyte to address the above anode issues. Leveraging its strong affinity for Zn2+ and H2O, M4 molecules reconstruct the Zn(H2O)6 2+ solvation sheath and adsorb onto the anode surface, effectively blocking direct contact between H+ and Zn. This dual action significantly mitigates acidic corrosion and HER, enhancing Zn anode reversibility and stability. Benefiting from these merits, symmetric cells exhibit exceptional cycling stability of over 2000 h at 5 mA cm-2 and 1 mAh cm-2, delivering a fivefold increase in lifespan compared to conventional electrolytic cells. Moreover, Zn//MnO2 batteries demonstrate stable operation for more than 3000 cycles in acidic electrolyte with an average Coulombic efficiency (CE) exceeding 97.3%. The assembled pouch cell delivers a high capacity of 1.68 Ah, maintaining stable operation for over 100 cycles. This work presents unique perspectives and offers promising avenues to improve the stability and efficiency of aqueous battery systems.
Collapse
Affiliation(s)
- Yinna Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhexuan Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhiqiang Xiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zhoujie Lao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jiachang Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xiao Xiao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingjin Fu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Fengyi Zheng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Guangmin Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Yang C, Woottapanit P, Geng S, Lolupiman K, Zhang X, Zeng Z, He G, Qin J. Highly Reversible Zn Anode Design Through Oriented ZnO(002) Facets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408908. [PMID: 39428920 PMCID: PMC11619232 DOI: 10.1002/adma.202408908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/25/2024] [Indexed: 10/22/2024]
Abstract
The practical implementation of aqueous Zn-ion batteries presents formidable hurdles, including uncontrolled dendrite growth, water-induced side reactions, suboptimal Zn metal utilization, and intricate Zn anode manufacturing. Here, large-scale construction of a highly oriented ZnO(002) lattice plane on Zn anode (ZnO(002)@Zn) with thermodynamic inertia and kinetic zincophilicity is designed to address such problems. Both theoretical calculations and experiment results elucidate that the ZnO(002)@Zn possesses high Zn chemical affinity, hydrogen evolution reaction suppression, and dendrite-free deposition ability due to the abundant lattice oxygen species in ZnO(002) and its low lattice mismatch with Zn(002). These features synergistically promote ion transport and enable homogeneous Zn deposition. Consequently, the ZnO(002)@Zn anode displays a stable and prolonged cycling lifespan exceeding 500 h even under a larger depth of discharge (85.6%) and realizes an impressive average Coulombic efficiency of 99.7%. Moreover, its efficacy is also evident in V2O5-cathode coin cells and pouch cells with not only high discharge capacity but also exceptional cycling stability. This integrated approach presents a promising avenue for addressing the challenges associated with Zn metal anodes, thereby advancing the prospects of aqueous Zn-ion battery technologies.
Collapse
Affiliation(s)
- Chengwu Yang
- Center of Excellence in Responsive Wearable MaterialsMetallurgy and Materials Science Research InstituteChulalongkorn UniversityBangkok10330Thailand
- State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004P. R. China
| | - Pattaraporn Woottapanit
- Center of Excellence in Responsive Wearable MaterialsMetallurgy and Materials Science Research InstituteChulalongkorn UniversityBangkok10330Thailand
| | - Sining Geng
- State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004P. R. China
| | - Kittima Lolupiman
- Center of Excellence in Responsive Wearable MaterialsMetallurgy and Materials Science Research InstituteChulalongkorn UniversityBangkok10330Thailand
| | - Xinyu Zhang
- State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdao066004P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine PollutionCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Guanjie He
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College LondonLondonWC1H 0AJUK
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable MaterialsMetallurgy and Materials Science Research InstituteChulalongkorn UniversityBangkok10330Thailand
| |
Collapse
|
4
|
Qiao X, Chen T, He F, Li H, Zeng Y, Wang R, Yang H, Yang Q, Wu Z, Guo X. Solvation Effect: The Cornerstone of High-Performance Battery Design for Commercialization-Driven Sodium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401215. [PMID: 38856003 DOI: 10.1002/smll.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Sodium batteries (SBs) emerge as a potential candidate for large-scale energy storage and have become a hot topic in the past few decades. In the previous researches on electrolyte, designing electrolytes with the solvation theory has been the most promising direction is to improve the electrochemical performance of batteries through solvation theory. In general, the four essential factors for the commercial application of SBs, which are cost, low temperature performance, fast charge performance and safety. The solvent structure has significant impact on commercial applications. But so far, the solvation design of electrolyte and the practical application of sodium batteries have not been comprehensively summarized. This review first clarifies the process of Na+ solvation and the strategies for adjusting Na+ solvation. It is worth noting that the relationship between solvation theory and interface theory is pointed out. The cost, low temperature, fast charging, and safety issues of solvation are systematically summarized. The importance of the de-solvation step in low temperature and fast charging application is emphasized to help select better electrolytes for specific applications. Finally, new insights and potential solutions for electrolytes solvation related to SBs are proposed to stimulate revolutionary electrolyte chemistry for next generation SBs.
Collapse
Affiliation(s)
- Xianyan Qiao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ting Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Fa He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Zeng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruoyang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Huan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Xu D, Zhang H, Xie J, Zhou L, Yang F, Ma J, Yu Y, Wang G, Lu X. Highly Reversible Tin Film Anode Guided via Interfacial Coordination Effect for High Energy Aqueous Acidic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408067. [PMID: 38923636 DOI: 10.1002/adma.202408067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Sn metal is a preferable choice as anode material for aqueous acidic batteries due to its acid-tolerance, non-toxicity, and ease of recycling. However, the large size and irregular deposition morphology of polyhedral Sn particles are bad for constructing stable and high-capacity Sn metal anode because of severe hydrogen evolution and metal shedding. To tackle this critical issue, 4-tert-octylphenol pentaethoxylate (POPE) is used as an electrolyte additive to generate a thin-film Sn anode with reversible stripping/plating behavior. POPE can not only induce homogeneous surface chemistry by adsorbing on the Sn surface via coordination bonds but also inhibit hydrogen evolution by modulating the solvation shell of Sn2+. The Sn film anode delivers improved electrochemical stability over 480 h with satisfactory rate performance and low polarization. Moreover, the as-assembled PbO2//Sn battery can also provide outstanding durability at 10 mAh cm-2. This work offers new inspiration for developing a reversible Sn metal film anode.
Collapse
Affiliation(s)
- Diyu Xu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Haozhe Zhang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jinhao Xie
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lijun Zhou
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Fan Yang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jianfeng Ma
- Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing, 100102, P. R. China
| | - Yanxia Yu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Guizhen Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Li H, Li S, Hou R, Rao Y, Guo S, Chang Z, Zhou H. Recent advances in zinc-ion dehydration strategies for optimized Zn-metal batteries. Chem Soc Rev 2024; 53:7742-7783. [PMID: 38904425 DOI: 10.1039/d4cs00343h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aqueous Zn-metal batteries have attracted increasing interest for large-scale energy storage owing to their outstanding merits in terms of safety, cost and production. However, they constantly suffer from inadequate energy density and poor cycling stability due to the presence of zinc ions in the fully hydrated solvation state. Thus, designing the dehydrated solvation structure of zinc ions can effectively address the current drawbacks of aqueous Zn-metal batteries. In this case, considering the lack of studies focused on strategies for the dehydration of zinc ions, herein, we present a systematic and comprehensive review to deepen the understanding of zinc-ion solvation regulation. Two fundamental design principles of component regulation and pre-desolvation are summarized in terms of solvation environment formation and interfacial desolvation behavior. Subsequently, specific strategy based distinct principles are carefully discussed, including preparation methods, working mechanisms, analysis approaches and performance improvements. Finally, we present a general summary of the issues addressed using zinc-ion dehydration strategies, and four critical aspects to promote zinc-ion solvation regulation are presented as an outlook, involving updating (de)solvation theories, revealing interfacial evolution, enhancing analysis techniques and developing functional materials. We believe that this review will not only stimulate more creativity in optimizing aqueous electrolytes but also provide valuable insights into designing other battery systems.
Collapse
Affiliation(s)
- Haoyu Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Sijie Li
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
| | - Ruilin Hou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Yuan Rao
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Zhi Chang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, Hunan, China.
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
7
|
Cao J, Wu H, Zhang D, Luo D, Zhang L, Yang X, Qin J, He G. In-Situ Ultrafast Construction of Zinc Tungstate Interface Layer for Highly Reversible Zinc Anodes. Angew Chem Int Ed Engl 2024; 63:e202319661. [PMID: 38703353 DOI: 10.1002/anie.202319661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Constructing artificial solid electrolyte interface on the Zn anode surface is recognized as an appealing method to inhibit zinc dendrites and side reactions, whereas the current techniques are complex and time-consuming. Here, a robust and zincophilic zinc tungstate (ZnWO4) layer has been in situ constructed on the Zn anode surface (denoted as ZWO@Zn) by an ultrafast chemical solution reaction. Comprehensive characterizations and theoretical calculations demonstrate that the ZWO layer can effectively modulate the interfacial electric field distribution and promote the Zn2+ uniform diffusion, thus facilitating the uniform Zn2+ nucleation and suppressing zinc dendrites. Besides, ZWO layer can prevent direct contact between the Zn/water and increase the hydrogen evolution reaction overpotential to eliminate side reactions. Consequently, the in situ constructed ZWO layer facilitates remarkable reversibility in the ZWO@Zn||Ti battery, achieving an impressive Coulombic efficiency of 99.36 % under 1.0 mA cm-2, unprecedented cycling lifespan exceeding 1800 h under 1.0 mA cm-2 in ZWO@Zn||ZWO@Zn battery, and a steady and reliable operation of the overall ZWO@Zn||VS2 battery. The work provides a simple, low cost, and ultrafast pathway to crafting protective layers for driving advancements in aqueous zinc-metal batteries.
Collapse
Affiliation(s)
- Jin Cao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, 443002, China
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Haiyang Wu
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Dongdong Zhang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Ding Luo
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Lulu Zhang
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Xuelin Yang
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Guanjie He
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| |
Collapse
|
8
|
Yang C, Woottapanit P, Yue Y, Geng S, Cao J, Zhang X, He G, Qin J. Industrial Waste Derived Separators for Zn-Ion Batteries Achieve Homogeneous Zn(002) Deposition Through Low Chemical Affinity Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311203. [PMID: 38233210 DOI: 10.1002/smll.202311203] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Designing a cost-effective and multifunctional separator that ensures dendrite-free and stable Zn metal anode remains a significant challenge. Herein, a multifunctional cellulose-based separator is presented consisting of industrial waste-fly ash particles and cellulose nanofiber using a facile solution-coating method. The resulting fly ash-cellulose (FACNF) separators enable a high ion conductivity (5.76 mS cm-1) and low desolvation energy barrier of hydrated Zn2+. These features facilitate fast ion transfer kinetics and inhibit water-induced side reactions. Furthermore, experimental results and theoretical simulations confirm that the presence of fly ash particles in FACNF separators effectively accommodate the preferential deposition of Zn(002) planes, due to the weak chemical affinity between Zn(002) plane and fly ash, to mitigate dendrite formation and growth. Consequently, the utilization of FACNF separators causes an impressive cycling performance in both Zn||Zn symmetric cells (1600 h at 2 mA cm-2/1 mAh cm-2) and Zn||(NH4)2V10O25 (NVO) full cells (4000 cycles with the capacity retention of 92.1% at 5 A g-1). Furthermore, the assembled pouch cells can steadily support digital thermometer over two months without generating gas and volume expansion. This work provides new insights for achieving crystallographic uniformity in Zn anodes and realizing cost-effective and long-lasting aqueous zinc-ion batteries (AZIBs).
Collapse
Affiliation(s)
- Chengwu Yang
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Pattaraporn Woottapanit
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yilei Yue
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Sining Geng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jin Cao
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Xinyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Zhan S, Guo Y, Wu K, Ning F, Liu X, Liu Y, Li Q, Zhang J, Lu S, Yi J. Regulating the Interfacial Charge Density by Constructing a Novel Zn Anode-Electrolyte Interface for Highly Reversible Zn Anode. Chemistry 2024; 30:e202303211. [PMID: 37909248 DOI: 10.1002/chem.202303211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention. However, due to the uneven distribution of charge density at Zn anode-electrolyte interface, severe dendrites and corrosion are generated during cycling. In this work, a facile and scalable strategy to address the above-mentioned issues has been proposed through regulating the charge density at Zn anode-electrolyte interface. As a proof of concept, amidinothiourea (ATU) with abundant lone-pair electrons is employed as an interfacial charge modifier for Zn anode-electrolyte interface. The uniform and increased interfacial charge distribution on Zn anode-electrolyte interface has been obtained. Moreover, the unique Zn-bond constructed between N atoms and Zn2+ as well as the hydrogen bonds are formed among ATU and Ac- anion/active H2 O, which promote the migration and desolvation behavior of Zn2+ at anode-electrolyte interface. Accordingly, at a trace concentration of 0.01 mg mL-1 ATU, these features endow Zn anode with a long cycling life (more than 800 h), and a high average Columbic efficiency (99.52 %) for Zn||Cu batteries. When pairing with I2 cathode, the improved cycling ability (5000 cycles) with capacity retention of 77.9 % is achieved. The fundamental understanding on the regulation of charge density at anode-electrolyte interface can facilitate the development of AZIBs.
Collapse
Affiliation(s)
- Shengkang Zhan
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Yiming Guo
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Kai Wu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Fanghua Ning
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Xiaoyu Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Yuyu Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Qian Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China
| | - Jiujun Zhang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Shigang Lu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| | - Jin Yi
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 20044, China
| |
Collapse
|
10
|
Hu S, Ma H, Fan X, Tao H, Yang X. Simultaneously Tailoring Zinc Deposition and Solvation Structure by Electrolyte Additive. ACS APPLIED MATERIALS & INTERFACES 2024; 16:933-942. [PMID: 38148324 DOI: 10.1021/acsami.3c16717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Aqueous zinc ion batteries (AZIBs) have attracted intense attention due to their high safety and low cost. Unfortunately, the serious dendrite growth and side reactions of the Zn metal anode in an aqueous electrolyte result in rapid battery failure, hindering the practical application of AZIBs. Herein, sodium gluconate as a dual-functional electrolyte additive has been employed to enhance the electrochemical performance of AZIBs. Gluconate anions preferentially adsorb on the surface of the Zn anode, which effectively prevents H2 evolution and induces uniform Zn deposition to suppress dendrite growth. Moreover, the gluconate anions can highly coordinate with Zn2+, promoting the dissolution of [Zn(H2O)6]2+ to inhibit side reactions and the water-induced corrosion reaction. As a result, the Zn||Zn symmetric battery exhibits a long-term cycling stability of over 3000 h at 1 mA cm-2/1 mA h cm-2 and 600 h at 10 mA cm-2/10 mA h cm-2. Furthermore, the NH4V4O10||Zn full battery also displays excellent cycling stability and a high reversible capacity of 193 mA h g-1 at 2 A g-1 after 1000 cycles. Given the low-cost advantage of SG, the proposed interface chemistry modulation strategy holds considerable potential for promoting the commercialization of AZIBs.
Collapse
Affiliation(s)
- Shiyang Hu
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, Hubei 443002, China
| | - Hui Ma
- Hubei Three Gorges Polytechnic, Yichang, Hubei 443000, China
| | - Xiaomeng Fan
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huachao Tao
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xuelin Yang
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
11
|
Zhang D, Cao J, Zhang X, Qin J, Zeng Z. Architecting a High-Energy-Density Rocking-Chair Zinc-Ion Batteries via Carbon-Wrapped Vanadium Dioxide. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032546 DOI: 10.1021/acsami.3c14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) show great potential in large-scale energy storage applications because of their low cost and high safety features, whereas the inefficient zinc utilization and uncontrollable dendrite issue of the zinc metal anode greatly limit their energy density and cycling stability. Herein, a carbon-wrapped vanadium dioxide (VO2@C) core-shell composite has been prepared and utilized as an intercalated anode of "rocking-chair" ZIBs. Benefiting from the carbon shell, the charge transfer and structural stability of VO2@C have been significantly improved, thus delivering a specific capacity of 425 mA h g-1 at 0.1 A g-1 and a capacity retention of 94.9% after 3000 cycles at 5 A g-1, better than that of VO2 (338 mA h g-1 and 59.2%). Further, the low Zn2+ intercalated potential (0.54 V vs Zn2+/Zn) and reversible Zn2+ intercalation/deintercalation behavior of VO2@C enable the successful construction of VO2@C||ZnMn2O4 "rocking-chair" ZIBs, which achieve a capacity of 104 mA h g-1 at 0.1 A g-1 and an exceptional energy density of 96.3 W h kg-1 at 74.1 W kg-1 (based on the total weight). This research enriches the currently available options for constructing high-energy-density energy storage systems.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jin Cao
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xinyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
12
|
Duan J, Dong J, Cao R, Yang H, Fang K, Liu Y, Shen Z, Li F, Liu R, Li H, Chen C. Regulated Zn Plating and Stripping by a Multifunctional Polymer-Alloy Interphase Layer for Stable Zn Metal Anode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303343. [PMID: 37574263 PMCID: PMC10582457 DOI: 10.1002/advs.202303343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Metallic zinc electrode with a high theoretical capacity of 820 mAh g-1 is highly considered as a promising candidate for next-generation rechargeable batteries. However, the unavoidable hydrogen evolution, uncontrolled dendrite growth, and severe passivation reaction badly hinder its practical implementations. Herein, a robust polymer-alloy artificial protective layer is designed to realize dendrite-free Zn metal anode by the integration of zincophilic SnSb nanoparticles with Nafion. In comparison to the bare Zn electrode, the Nafion-SnSb coated Zn (NFSS@Zn) electrode exhibits lower nucleation energy barrier, more uniform electric field distribution and stronger anti-corrosion capability, thus availably suppressing the Zn dendrite growth and interfacial side reactions. As a consequence, the NFSS@Zn electrode exhibits a long cycle life over 1500 h at 1 mA cm-2 with an ultra-low voltage hysteresis (25 mV). Meanwhile, when paired with a MnO2 cathode, the as-prepared full cell also demonstrates stable performance for 1000 cycles at 3 A g-1 . This work provides an inspired approach to boost the performance of Zn anodes.
Collapse
Affiliation(s)
- Junwen Duan
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Jiaming Dong
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Ruirui Cao
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Hao Yang
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Kangkang Fang
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Ying Liu
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Zhitao Shen
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Fumin Li
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Rong Liu
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Huilin Li
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
| | - Chong Chen
- Henan Key Laboratory of Photovoltaic MaterialsCollege of Future TechnologyHenan UniversityKaifeng475000P. R. China
- Institute of Solid State PhysicsChinese Academy of SciencesHefei230031P. R. China
| |
Collapse
|