1
|
Liu Z, Wang X, Zhang P, Zhang H, Wang S, Jiao G, Wu W, Wu M. Improved H 2O 2 Photogeneration on KBr Doped-Polymeric Carbon Nitride Via Optimize the Oxygen Reduction Path. Chemistry 2025; 31:e202404003. [PMID: 39714976 DOI: 10.1002/chem.202404003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The photosynthesis of hydrogen peroxide (H2O2) from oxygen (O2) represents a promising catalytic pathway, the limited efficiency of the oxygen reduction constitutes a primary barrier to enhancing production. In this content, alkali metal potassium (K+) and Br-doped g-C3N4 photocatalysts (K-CN) were successfully constructed by one-pot method. The introduction of K+ is not only beneficial to the transmission of space charge and the separation efficiency of photogenerated carriers, but also promotes the efficient production of H2O2 by 2e- oxygen reduction reaction. The introduction of Br- promotes O2 converted to triplet state and triggers energy transfer process to increase 1O2 production, O2 adsorption was facilitated through regulating the oxygen evolution (O2→1O2), which is beneficial to the subsequent oxygen reduction process. The results showed that the H2O2 yield of 0.05 K-CN catalyst reached 26.0 mmol g-1 h-1, which was more than 5 times that of pure g-C3N4.
Collapse
Affiliation(s)
- Ziyu Liu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xinyu Wang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Pengye Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Haonan Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shuai Wang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Gaiyan Jiao
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
2
|
Liu MX, Cai YT, Wang RJ, Zhu PF, Liu YC, Sun H, Ling Y, Zhu WZ, Chen J, Zhang XL. Aggregation-Induced Emission CN-Based Nanoparticles to Alleviate Hypoxic Liver Fibrosis via Triggering HSC Ferroptosis and Enhancing Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33021-33037. [PMID: 38888460 DOI: 10.1021/acsami.4c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Hypoxia can lead to liver fibrosis and severely limits the efficacy of photodynamic therapy (PDT). Herein, carbon nitride (CN)-based hybrid nanoparticles (NPs) VPSGCNs@TSI for light-driven water splitting were utilized to solve this problem. CNs were doped with selenide glucose (Se-glu) to enhance their red/NIR region absorption. Then, vitamin A-poly(ethylene glycol) (VA-PEG) fragments and aggregation-induced emission (AIE) photosensitizers TSI were introduced into Se-glu-doped CN NPs (VPSGCNs) to construct VPSGCNs@TSI NPs. The introduction of VA-PEG fragments enhanced the targeting of the NPs to activated hepatic stellate cells (HSCs) and reduced their toxicity to ordinary liver cells. VPSGCN units could trigger water splitting to generate O2 under 660 nm laser irradiation, improve the hypoxic environment of the fibrosis site, downregulate HIF-1α expression, and activate HSC ferroptosis via the HIF-1α/SLC7A11 pathway. In addition, generated O2 could also increase the reactive oxygen species (ROS) production of TSI units in a hypoxic environment, thereby completely reversing hypoxia-triggered PDT resistance to enhance the PDT effect. The combination of water-splitting materials and photodynamic materials showed a 1 + 1 > 2 effect in increasing oxygen levels in liver fibrosis, promoting ferroptosis of activated HSCs and reversing PDT resistance caused by hypoxia.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yu-Ting Cai
- School of Pharmacy, Nantong University, Nantong 226001, PR China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Ruo-Jia Wang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Peng-Fei Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yan-Chao Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Hao Sun
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Wei-Zhong Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| |
Collapse
|
3
|
Li X, Wang H, Li S, Xu Y, Bian Z. Doping and defects in carbon nitride cause efficient in situ H 2O 2 synthesis to allow efficient photocatalytic sterilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172109. [PMID: 38556021 DOI: 10.1016/j.scitotenv.2024.172109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
In situ photocatalytic synthesis of H2O2 for disinfection has attracted widespread attention because it is a clean and environmentally friendly sterilization method. Graphitic carbon nitride has been used as a very selective photocatalyst for H2O2 generation but has some limitations (e.g., insufficient light absorption, rapid electron-hole recombination, and slow direct two-electron reduction processes) that prevent efficient H2O2 production. In this study, potassium-doped graphite carbon nitride with nitrogen vacancies (NDKCN) was prepared using a simple method involving a thermal fusion salt and N2 calcination, which possessed an ultrathin nanosheet structure (1.265 nm) providing abundant active sites. Synergistic effects caused by nitrogen vacancies and K+ and I- doping in the NDKCN photocatalyst gave the NDKCN a good ability to absorb light, undergo fast charge transfer, and give a high photoelectric current response. The optimized photocatalytic H2O2 yield of the NDKCN was 780.1 μM·g-1·min-1, which was 10 times the yield of the pristine g-C3N4. Tests involving quenching reactive species, electron spin resonance, and rotating disk electrodes indicated that one-step two-electron direct reduction on the NDKCN caused excellent H2O2 generation performance. The ability to efficiently generate H2O2 in situ gave NDKCN an excellent bactericidal performance, and 7.3 log10 (colony-forming units·mL-1) of Escherichia coli were completely eliminated within 80 min. Scanning electron microscopy images before and after sterilization indicated the changes in bacteria caused by the catalytic activity. The new g-C3N4-based photocatalyst and similar rationally designed photocatalysts with doping and defects offer efficient and simple in situ H2O2 sterilization.
Collapse
Affiliation(s)
- Xinyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Shunlin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ye Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Li S, Chu S, Xia M, Wei H, Lu Y. Enhanced biomimetic catalysis via self-cascade photocatalytic hydrogen peroxide production over modified carbon nitride nanozymes for total antioxidant capacity evaluation. J Colloid Interface Sci 2024; 660:771-779. [PMID: 38271812 DOI: 10.1016/j.jcis.2024.01.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The peroxidase mimics usually requires the addition of exogenous hydrogen peroxide (H2O2), which greatly hinder their practical applications. Herein, through rational co-modification of multiple elements (potassium (K), chlorine (Cl) and iodine (I)), the modified carbon nitride nanomaterials (KCl/KI-CN) could serve as efficient bifunctional catalysts. The multiple elements doping and the incorporation of cyano groups (CN) are deemed to enhance their photocatalytic and peroxidase-like activity, respectively. Based on the photocatalytic function, H2O2 can be produced continuously and steadily via two-electron oxygen reduction over modified carbon nitride under visible light irradiation. Subsequently, the KCl/KI-CN could catalyze the chromogenic substrate by the in-situ produced H2O2. Taking advantage of the bifunctional properties of modified carbon nitride, we for the first time demonstrate a self-cascade catalytic process and apply successfully for the ascorbic acid (AA) detection and versatile total antioxidant capacity (TAC) evaluation. This paper not only prepares an efficiently bifunctional catalyst but also provides a new self-cascade photocatalytic H2O2 production strategy for the peroxidase-like application.
Collapse
Affiliation(s)
- Shengzhen Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Shushu Chu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Mingyuan Xia
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Hengya Wei
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
5
|
Jyothirmai MV, Dantuluri R, Sinha P, Abraham BM, Singh JK. Machine-Learning-Driven High-Throughput Screening of Transition-Metal Atom Intercalated g-C 3N 4/MX 2 (M = Mo, W; X = S, Se, Te) Heterostructures for the Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38436945 DOI: 10.1021/acsami.3c17389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Rising global energy demand, accompanied by environmental concerns linked to conventional fossil fuels, necessitates a shift toward cleaner and sustainable alternatives. This study focuses on the machine-learning (ML)-driven high-throughput screening of transition-metal (TM) atom intercalated g-C3N4/MX2 (M = Mo, W; X = S, Se, Te) heterostructures to unravel the rich landscape of possibilities for enhancing the hydrogen evolution reaction (HER) activity. The stability of the heterostructures and the intercalation within the substrates are verified through adhesion and binding energies, showcasing the significant impact of chalcogenide selection on the interaction properties. Based on hydrogen adsorption Gibbs free energy (ΔGH) computed via density functional theory (DFT) calculations, several ML models were evaluated, particularly random forest regression (RFR) emerges as a robust tool in predicting HER activity with a low mean absolute error (MAE) of 0.118 eV, thereby paving the way for accelerated catalyst screening. The Shapley Additive exPlanation (SHAP) analysis elucidates pivotal descriptors that influence the HER activity, including hydrogen adsorption on the C site (HC), MX layer (HMX), S site (HS), and intercalation of TM atoms at the N site (IN). Overall, our integrated approach utilizing DFT and ML effectively identifies hydrogen adsorption on the N site (site-3) of g-C3N4 as a pivotal active site, showcasing exceptional HER activity in heterostructures intercalated with Sc and Ti, underscoring their potential for advancing catalytic performance.
Collapse
Affiliation(s)
- M V Jyothirmai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Roshini Dantuluri
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Priyanka Sinha
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - B Moses Abraham
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Prescience Insilico Private Limited, Bangalore 560049, India
| |
Collapse
|