1
|
Xiao J, He M, Zhan B, Guo H, Yang JL, Zhang Y, Qi X, Gu J. Multifunctional microwave absorption materials: construction strategies and functional applications. MATERIALS HORIZONS 2024; 11:5874-5894. [PMID: 39229798 DOI: 10.1039/d4mh00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The widespread adoption of wireless communication technology, especially with the introduction of artificial intelligence and the Internet of Things, has greatly improved our quality of life. However, this progress has led to increased electromagnetic (EM) interference and pollution issues. The development of advanced microwave absorbing materials (MAMs) is one of the most feasible solutions to solve these problems, and has therefore received widespread attention. However, MAMs still face many limitations in practical applications and are not yet widely used. This paper presents a comprehensive review of the current status and future prospects of MAMs, and identifies the various challenges from practical application scenarios. Furthermore, strategies and principles for the construction of multifunctional MAMs are discussed in order to address the possible problems that are faced. This article also presents the potential applications of MAMs in other fields including environmental science, energy conversion, and medicine. Finally, an analysis of the potential outcomes and future challenges of multifunctional MAMs are presented.
Collapse
Affiliation(s)
- Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Beibei Zhan
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang City 550025, People's Republic of China.
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Wang X, Zhang X, Lu J, Liu Z. Fabrication of flower-like CoFe/C composites derived from ferrocene-based metal-organic frameworks: an in situ growth strategy toward high-efficiency electromagnetic wave absorption. NANOSCALE 2024; 16:18952-18961. [PMID: 39292146 DOI: 10.1039/d4nr02661f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Magnetic/dielectric composites can achieve high-efficiency electromagnetic wave (EMW) absorption performance by integrating multiple mechanisms such as dielectric loss and magnetic loss. The bimetallic metal-organic frameworks (MOFs) assembled from ferrocene (Fc) derivative-based bridging ligands are considered ideal precursors for the preparation of magnetic/dielectric composites due to tailored alloy components with magnetic losses. Herein, a novel CoFe/C composite with nanoflower structures is successfully obtained via an in situ growth strategy to decompose an Fc-based bimetallic MOF assembled from 1,1'-ferrocene dicarboxylic acid as bridging ligands and Co2+ ions. Notably, the nanoflower structures of the obtained composites provide an effective path for the scattering and reflection of the EMW, thereby improving the impedance matching by combining dielectric and magnetic loss. The CoFe/C composite exhibits excellent EMW absorption performance and has a minimum reflection loss of -61.6 dB at 3.7 mm and an effective absorption bandwidth of 6.24 GHz at a corresponding thickness of 2.2 mm. Moreover, the obtained composite exhibits lightweight characteristics and a low radar cross-section. This work presents a novel method through Fc-based bimetallic MOF derivatives to design and develop novel magnetic/dielectric composites with efficient EMW absorption properties for comprehensive applications.
Collapse
Affiliation(s)
- Xueling Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Xuan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Jiaqi Lu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| |
Collapse
|
3
|
Wang H, Xiao X, An Q, Xiao Z, Zhu K, Zhai S, Dong X, Xue C, Wu H. Low-Frequency Evolution Mechanism of Customized HEAs-Based Electromagnetic Response Modes Manipulated by Carbothermal Shock. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309773. [PMID: 38461545 DOI: 10.1002/smll.202309773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Indexed: 03/12/2024]
Abstract
An emerging carbothermal shock method is an ultra-convenient strategy for synthesizing high-entropy alloys (HEAs), in which the intelligent combination of carbon support and HEAs can be serve as a decisive factor for interpreting the trade-off relationship between conductive gene and dielectric gene. However, the feedback mechanism of HEAs ordering degree on electromagnetic (EM) response in 2-18 GHz has not been comprehensively demystified. Herein, while lignin-based carbon fiber paper (L-CFP) as carbon support, L-CFP/FeCoNiCuZn-X with is prepared by carbothermal shock method. The reflection loss of -82.6 dB with thickness of 1.31 mm is achieved by means of pointing electron enrichment within L-CFP/FeCoNiCuZn HEAs heterointerfaces verified by theoretical calculations. Simultaneously, low-frequency evolution with high-intensity and broadband EM response relies on a "sacrificing" strategy achieved by construction of polymorphic L-CFP/semi-disordered-HEAs heterointerfaces. The practicality of L-CFP/FeCoNiCuZn-X in complex environments is given prominence to thermal conductivity, hydrophobicity, and electrocatalytic property. This work is of great significance for insightful mechanism analysis of HEAs in the application of electromagnetic wave absorption.
Collapse
Affiliation(s)
- Honghan Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xinyu Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Kairuo Zhu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xiaoling Dong
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
4
|
Wang X, Zhang X, He A, Guo J, Liu Z. Toward Enhancing Performance of Electromagnetic Wave Absorption for Conductive Metal-Organic Frameworks: Nanostructure Engineering or Crystal Morphology Controlling. Inorg Chem 2024; 63:6948-6956. [PMID: 38575907 DOI: 10.1021/acs.inorgchem.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Conductive metal-organic frameworks (cMOFs), which have high porosity and intrinsic electron conductivity, are regarded as ideal candidates for electromagnetic wave (EMW) absorption materials. Controlling the nanostructure of absorbers may be one of the effective strategies to improve the electromagnetic wave (EMW) absorption performance. Herein, a series of conductive Cu-HHTP MOFs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenyl hydrates) with different nanostructures or crystal morphologies were successfully synthesized by using different structural inducers to regulate the changes in the morphology, thereby improving the EMW absorption performance. Specifically, when ammonia was used as an inducer, the obtained A-Cu-HHTP with a nanosheet structure exhibited excellent EMW absorption performance. The minimum reflection loss (RLmin) can reach -51.08 dB at 7.25 GHz with a thickness of 4.4 mm, and the maximum effective absorption bandwidth (EAB) can cover 5.73 GHz at 2.5 mm. The influence of the nanostructures of the cMOFs on the dielectric and EMW absorption performance was clarified. The nanosheet structure of A-Cu-HHTP increases its specific surface area, which expands multiple scattering and reflection paths of incident EMW; Meanwhile, the unique structure facilitates the formation of more heterogeneous interfaces, optimizing impedance matching. The significant improvement in EMW performance is mainly attributed to multiple reflections and scattering as well as impedance matching. This work not only provides a simple and effective strategy for improving electromagnetic wave absorption performance but also offers guidelines for preparing morphology functional cMOF materials.
Collapse
Affiliation(s)
- Xueling Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Xuan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Aining He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jing Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
5
|
Hang T, Xu C, Shen J, Zheng J, Zhou L, Li M, Li X, Jiang S, Yang P, Zhou W, Chen Y. Ultra-flexible silver/iron nanowire decorated melamine composite foams for high-efficiency electromagnetic wave absorption and thermal management. J Colloid Interface Sci 2024; 654:945-954. [PMID: 37898078 DOI: 10.1016/j.jcis.2023.10.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/12/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Nowadays, functional electronic devices with excellent flexibility and thermal management capability for effective electromagnetic wave absorption are urgently in demand. Herein, a novel and highly flexible silver nanowire (AgNW)/iron nanowire (FeNW) decorated melamine composite foam (AgFe-MF) was prepared via simple dip-coating process. Owing to optimal impedance matching, synergistic dielectric and magnetic losses as well as three-dimensional porous structure, the AgFe-MF with an ultra-low filler content (0.22 vol%) exhibited an outstanding minimum reflection loss of -69.61 dB, and the best effective absorption bandwidth (EAB) could reach up to 6.37 GHz. Importantly, the EAB of long-time working AgFe-MF was enhanced to 7.01 GHz after 1000 compress-release cycles under 40 % strain. Besides, it also featured considerate Joule heating capacity and achieved a saturation temperature of over 85.7 ℃ under 2.6 V voltage. The impressive thermal isolation and long-term stability ensured the safety used as portable heater. Therefore, this work will provide a vital slight for fabricating smart wearable electronic devices with integrated anti-electromagnetic radiation and personalized thermal management performances towards potential thermal and health threats.
Collapse
Affiliation(s)
- Tianyi Hang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Chenhui Xu
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jiahui Shen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Jiajia Zheng
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| | - Lijie Zhou
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Mengjia Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Xiping Li
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Pingan Yang
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Wei Zhou
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Yiming Chen
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
6
|
Zhang X, Chen X, Min W, Liang G, Zhang W, Yao S, Zhong X. Preparation of multifunctional ceramic foams for sound absorption, waterproofing, and antibacterial applications. RSC Adv 2024; 14:1009-1017. [PMID: 38174280 PMCID: PMC10759285 DOI: 10.1039/d3ra06675d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Using porous materials for sound absorption is an effective approach to alleviating noise pollution, although their hydrophilic properties potentially cause concerns regarding public safety and health risks. This work provides a facile strategy for establishing a multifunctional ceramic system by using sponges as the sintering template, adjusting the pore structure of ceramic foams by varying the ceramic slurry weights and fluorinating the sintered ceramic foams via hydrolysis and condensation processes to provide low surface energy. The obtained porous ceramic foams demonstrate sound-absorbing, waterproof, and antibacterial properties. The results reveal that the increase in ceramic slurry weight decreases the pore size and porosity due to the formation of more compact structures, and the decrease in porosity compromises the sound absorption performance. In the middle-range sound frequency, the maximum sound absorption coefficient reached 0.92. In addition, the fluorination of the rough ceramic surfaces endows the ceramic foams with waterproof properties, which enables them to float on water and display the silver mirror phenomenon. In addition, due to the waterproof property reducing the contact area between the ceramic surface and the bacterial suspension, as well as the lipophilic fluorine chain disrupting the bacterial structures, these ceramic foams exhibited antibacterial rates above 95%. In addition, the mechanisms underlying the sound-absorbing, waterproof, and antibacterial properties of these porous ceramic foams are elucidated. Therefore, this work provides a facile approach to developing a multifunctional ceramic system. Their practical features make these ceramic foams more significant in the field of noise reduction.
Collapse
Affiliation(s)
- Xizhi Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology Taipa Macau 999078 China
| | - Xiaozhong Chen
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Wenchao Min
- HeXiangNing College of Art and Design, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| | - Guowei Liang
- School of Materials Science and Engineering, South China University of Technology Guangzhou Guangdong 510641 China
| | - Wei Zhang
- Faculty of Humanities and Arts, Macau University of Science and Technology Taipa Macau 999078 China
| | - Shuheng Yao
- Faculty of Humanities and Arts, Macau University of Science and Technology Taipa Macau 999078 China
| | - Ximing Zhong
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou Guangdong 510225 China
| |
Collapse
|
7
|
Wang YQ, Ding R, Zhang YC, Liu BW, Fu Q, Zhao HB, Wang YZ. Gradient Hierarchical Hollow Heterostructures of Ti 3C 2T x@rGO@MoS 2 for Efficient Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366118 DOI: 10.1021/acsami.3c06860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heterostructure engineering has emerged as a promising approach for creating high-performance microwave absorption materials in various applications such as advanced communications, portable devices, and military fields. However, achieving strong electromagnetic wave attenuation, good impedance matching, and low density in a single heterostructure remains a significant challenge. Herein, a unique structural design strategy that employs a hollow structure coupled with gradient hierarchical heterostructures to achieve high-performance microwave absorption is proposed. MoS2 nanosheets are uniformly grown onto the double-layered Ti3C2Tx MXene@rGO hollow microspheres through self-assembly and sacrificial template techniques. Notably, the gradient hierarchical heterostructures, comprising a MoS2 impedance matching layer, a reduced graphene oxide (rGO) lossy layer, and a Ti3C2Tx MXene reflective layer, have demonstrated significant improvements in impedance matching and attenuation capabilities. Additionally, the incorporation of a hollow structure can further improve microwave absorption while reducing the overall composite density. The distinctive gradient hollow heterostructures enable Ti3C2Tx@rGO@MoS2 hollow microspheres with exceptional microwave absorption properties. The reflection loss value reaches as strong as -54.2 dB at a thin thickness of 1.8 mm, and the effective absorption bandwidth covers the whole Ku-band, up to 6.04 GHz. This work provides an exquisite perspective on heterostructure engineering design for developing next-generation microwave absorbers.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Ding
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yu-Chuan Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|