1
|
Hu Y, Wang F, Ma Y, Ma S, Wang L. Recent Advances in Polyvinylidene Fluoride with Multifunctional Properties in Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412476. [PMID: 40066503 DOI: 10.1002/smll.202412476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Amid the global energy crisis and rising emphasis on sustainability, efficient energy harvesting has become a research priority. Nanogenerators excel in converting abundant mechanical and thermal energy into electricity, offering a promising path for sustainable solutions. Among various nanogenerator's materials, Polyvinylidene fluoride (PVDF), with its distinctive molecular structure, exhibits multifunctional electrical properties including dielectric, piezoelectric and pyroelectric characteristics. These properties combined with its excellent flexibility make PVDF a prime candidate material for nanogenerators. In nanogenerators, this material is capable of efficiently collecting and converting energy. This paper discusses how PVDF's properties are manifested in three types of nanogenerators and compares the performance of these nanogenerators. In addition, strategies to improve the output performance of nanogenerators are demonstrated, including physical and chemical modification of materials, as well as structural optimization strategies such as hybrid structures and external circuits. It also introduces the application of this material in natural and human energy harvesting, as well as its promising prospects in medical technologies and smart home systems. The aim is to promote the use of PVDF in self-powered sensing, energy harvesting and smart monitoring, thereby providing valuable insights for designing more efficient and versatile nanogenerators.
Collapse
Affiliation(s)
- Yueming Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yan Ma
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shufeng Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Wang X, Gao Y, Yuan Y, Wang Y, Liu A, Jia S, Yang W. Wearable Medical Devices: Application Status and Prospects. MICROMACHINES 2025; 16:394. [PMID: 40283271 PMCID: PMC12029246 DOI: 10.3390/mi16040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Electronic skin (E-skin) refers to a portable medical or health electronic device that can be worn directly on the human body and can carry out perception, recording, analysis, regulation, intervention and even treatment of diseases or maintenance of health status through software support. Its main features include wearability, real-time monitoring, convenience, etc. E-skin is convenient for users to wear for a long time and continuously monitors the user's physiological health data (such as heart rate, blood pressure, blood glucose, etc.) in real time. Health monitoring can be performed anytime and anywhere without frequent visits to hospitals or clinics. E-skin integrates multiple sensors and intelligent algorithms to automatically analyze data and provide health advice and early warning. It has broad application prospects in the medical field. With the increasing demand for E-skin, the development of multifunctional integrated E-skin with low power consumption and even autonomous energy has become a common goal of many researchers. This paper outlines the latest progress in the application of E-skin in physiological monitoring, disease treatment, human-computer interaction and other fields. The existing problems and development prospects in this field are presented.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yingnan Gao
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yueze Yuan
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Yaping Wang
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Anqin Liu
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Sen Jia
- School of Mechanical and Electrical Engineering, Yantai Institute of Technology, Yantai 264005, China; (Y.G.); (Y.Y.); (Y.W.); (A.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| |
Collapse
|
3
|
Linh VTN, Han S, Koh E, Kim S, Jung HS, Koo J. Advances in wearable electronics for monitoring human organs: Bridging external and internal health assessments. Biomaterials 2025; 314:122865. [PMID: 39357153 DOI: 10.1016/j.biomaterials.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Devices used for diagnosing disease are often large, expensive, and require operation by trained professionals, which can result in delayed diagnosis and missed opportunities for timely treatment. However, wearable devices are being recognized as a new approach to overcoming these difficulties, as they are small, affordable, and easy to use. Recent advancements in wearable technology have made monitoring information possible from the surface of organs like the skin and eyes, enabling accurate diagnosis of the user's internal status. In this review, we categorize the body's organs into external (e.g., eyes, oral cavity, neck, and skin) and internal (e.g., heart, brain, lung, stomach, and bladder) organ systems and introduce recent developments in the materials and designs of wearable electronics, including electrochemical and electrophysiological sensors applied to each organ system. Further, we explore recent innovations in wearable electronics for monitoring of deep internal organs, such as the heart, brain, and nervous system, using ultrasound, electrical impedance tomography, and temporal interference stimulation. The review also addresses the current challenges in wearable technology and explores future directions to enhance the effectiveness and applicability of these devices in medical diagnostics. This paper establishes a framework for correlating the design and functionality of wearable electronics with the physiological characteristics and requirements of various organ systems.
Collapse
Affiliation(s)
- Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Seunghun Han
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Eunhye Koh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Sumin Kim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, South Korea; School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Jahyun Koo
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
4
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
5
|
Du Y, Kim JH, Kong H, Li AA, Jin ML, Kim DH, Wang Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv Healthc Mater 2024; 13:e2303461. [PMID: 38569196 DOI: 10.1002/adhm.202303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases represent a significant threat to the overall well-being of the global population. Continuous monitoring of vital signs related to cardiovascular health is essential for improving daily health management. Currently, there has been remarkable proliferation of technology focused on collecting data related to cardiovascular diseases through daily electronic skin monitoring. However, concerns have arisen regarding potential skin irritation and inflammation due to the necessity for prolonged wear of wearable devices. To ensure comfortable and uninterrupted cardiovascular health monitoring, the concept of biocompatible electronic skin has gained substantial attention. In this review, biocompatible electronic skins for cardiovascular health monitoring are comprehensively summarized and discussed. The recent achievements of biocompatible electronic skin in cardiovascular health monitoring are introduced. Their working principles, fabrication processes, and performances in sensing technologies, materials, and integration systems are highlighted, and comparisons are made with other electronic skins used for cardiovascular monitoring. In addition, the significance of integrating sensing systems and the updating wireless communication for the development of the smart medical field is explored. Finally, the opportunities and challenges for wearable electronic skin are also examined.
Collapse
Affiliation(s)
- Yucong Du
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hui Kong
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Anne Ailina Li
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
6
|
Jiang Y, Zhao S, Wang F, Zhang X, Su Z. Highly Stretchable Double Network Ionogels for Monitoring Physiological Signals and Detecting Sign Language. BIOSENSORS 2024; 14:227. [PMID: 38785701 PMCID: PMC11118894 DOI: 10.3390/bios14050227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
At the heart of the non-implantable electronic revolution lies ionogels, which are remarkably conductive, thermally stable, and even antimicrobial materials. Yet, their potential has been hindered by poor mechanical properties. Herein, a double network (DN) ionogel crafted from 1-Ethyl-3-methylimidazolium chloride ([Emim]Cl), acrylamide (AM), and polyvinyl alcohol (PVA) was constructed. Tensile strength, fracture elongation, and conductivity can be adjusted across a wide range, enabling researchers to fabricate the material to meet specific needs. With adjustable mechanical properties, such as tensile strength (0.06-5.30 MPa) and fracture elongation (363-1373%), this ionogel possesses both robustness and flexibility. This ionogel exhibits a bi-modal response to temperature and strain, making it an ideal candidate for strain sensor applications. It also functions as a flexible strain sensor that can detect physiological signals in real time, opening doors to personalized health monitoring and disease management. Moreover, these gels' ability to decode the intricate movements of sign language paves the way for improved communication accessibility for the deaf and hard-of-hearing community. This DN ionogel lays the foundation for a future in which e-skins and wearable sensors will seamlessly integrate into our lives, revolutionizing healthcare, human-machine interaction, and beyond.
Collapse
Affiliation(s)
- Ya Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengyuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Wang Y, Guo J, Cao X, Zhao Y. Developing conductive hydrogels for biomedical applications. SMART MEDICINE 2024; 3:e20230023. [PMID: 39188512 PMCID: PMC11235618 DOI: 10.1002/smmd.20230023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/28/2024]
Abstract
Conductive hydrogels have attracted copious attention owing to their grateful performances, such as similarity to biological tissues, compliance, conductivity and biocompatibility. A diversity of conductive hydrogels have been developed and showed versatile potentials in biomedical applications. In this review, we highlight the recent advances in conductive hydrogels, involving the various types and functionalities of conductive hydrogels as well as their applications in biomedical fields. Furthermore, the current challenges and the reasonable outlook of conductive hydrogels are also given. It is expected that this review will provide potential guidance for the advancement of next-generation conductive hydrogels.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Southeast University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|