1
|
Wu P, Jin L, Jiang W, Zhou Y, Lin L, Lin H, Chen H. Smart bandages for wound monitoring and treatment. Biosens Bioelectron 2025; 283:117522. [PMID: 40334449 DOI: 10.1016/j.bios.2025.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Wound management plays a crucial role in nursing care as it facilitates effective wound healing and prevents infections. To overcome limitations associated with traditional treatment methods, various smart bandages have been developed. The monitoring of wound parameters and the implementation of targeted treatments are crucial aspects of smart bandage development. Smart bandages, as cutting-edge flexible wearable medical devices, integrate various sensing technologies, providing new insights for dynamic monitoring and personalized treatment of chronic wounds. This paper systematically summarizes the applications and developments of smart bandages in monitoring wound environmental parameters, focusing on two major detection methods: colorimetric sensing and electrochemical sensing. Colorimetric sensors typically rely on color changes induced by physiological parameters, which can not only be identified by the naked eye but also combined with image recognition algorithms for physiological parameter detection. Electrochemical sensors, on the other hand, modify electrodes with specific enzymes and detect physiological parameters through the electrical signals generated by redox reactions. In addition to sensing, this paper further explores the integrated application of three smart therapeutic strategies in smart bandages, including promoting cell proliferation and angiogenesis through electrical stimulation, achieving controlled drug release via responsive materials, and utilizing photothermal materials for efficient antibacterial treatment of wounds. Finally, the paper delves into the challenges these bandages face in system integration and clinical translation, and discusses their potential in personalized wound care.
Collapse
Affiliation(s)
- Ping Wu
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Long Jin
- Department of Pathology, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Wanying Jiang
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Yingzhang Zhou
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Lisheng Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Hongxin Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Hu Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Kumar M, Sethi P, Shiekmydeen J, Rastogi S, Mahmood S, Chopra S, Thomas S, Kumar D, Bhatia A. A recent review on smart sensor-integrated wound dressings: Real-time monitoring and on-demand therapeutic delivery. Int J Biol Macromol 2025; 313:144251. [PMID: 40381780 DOI: 10.1016/j.ijbiomac.2025.144251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Wound management is a critical aspect of healthcare, necessitating continuous monitoring and timely interventions to ensure optimal healing outcomes. In recent years, the integration of sensor technology into wound dressings has emerged as a transformative approach, enabling real-time monitoring of healing parameters and facilitating on-demand treatment delivery. Sensor-based wound dressings leverage various sensing modalities, including temperature, pH, moisture, oxygen, and other biochemical markers, to provide comprehensive insights into the wound microenvironment. These dressings are equipped with miniaturized sensors capable of transmitting the data wirelessly, facilitating remote monitoring and timely interventions. Moreover, some advanced dressings incorporate responsive drug delivery systems, enabling the on-demand release of therapeutics based on real-time sensor feedback. Additionally, the incorporation of on-demand treatment mechanisms allows targeted delivery of therapeutics based on the specific needs of the wound, further enhancing the efficacy of the healing process. This comprehensive approach improves patient outcomes by promoting faster and more effective wound healing and reducing the burden through streamlined monitoring and treatment protocols. This paper presents an overview of recent advancements in sensor technology applied to wound healing, focusing on their role in monitoring wound parameters and delivering targeted therapy. These sensors leverage temperature, pH, and glucose sensing modalities to provide comprehensive insights into the healing process.
Collapse
Affiliation(s)
- Mohit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Pranshul Sethi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Jailani Shiekmydeen
- Formulation R&D, Alpha Pharma Industries, King Abdullah Economic City (KAEC), Rabigh, Saudi Arabia
| | - Sonali Rastogi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, UP 244236, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Faculty of Pharmaceutical Sciences, Chulalongkorn University, 10330, PathumWan, Bangkok, Thailand
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura 281 406, U. P., India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India.
| |
Collapse
|
3
|
Romanholo PVV, Andrade LM, Giglioti M, Luccas GZA, Machado SAS, Sgobbi LF. Parallel assembly of dual-electrochemical cell: a novel approach for simultaneous multiplexed sensing analysis. Mikrochim Acta 2025; 192:340. [PMID: 40328952 DOI: 10.1007/s00604-025-07194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
In the field of biosensing and chemical sensing, there is a growing demand for multiplexed detection and quantification of multiple targets within complex matrices. In electrochemical sensing, simultaneous multiplexed analysis is typically performed with multiple electrodes connected to a multichannel potentiostat. An alternative strategy involves using a single electrode capable of discriminating and detecting several analytes in a single measurement, which is, however, unfortunately limited to a selective group of molecules. Herein, we report a novel electrochemical method based on the parallel assembly of a dual-electrochemical cell (PADEC), which enables the simultaneous detection and quantification of solvent-incompatible analytes, prepared separately in two distinct electrochemical cells, using a single-channel potentiostat-thus achieving multichannel-like performance. This approach relies on connecting two electrochemical cells in parallel, allowing the concurrent measurement of distinct electrochemical responses from analytes that otherwise could not be simultaneously determined due to solvent incompatibility. As a proof of concept, the water-soluble vitamin C, and the lipid-soluble vitamin D3 were simultaneously determined, each in its respective optimized medium. The PADEC approach demonstrated performance comparable to individual detection methods, achieving limits of detection of 27 μM for vitamin C and 32 μM for vitamin D3 over a linear range of 20-400 μM. This strategy establishes a new approach for simultaneous, multiplexed electrochemical determination of analytes in different media. Moreover, this innovation may extend applications in electrochemistry beyond (bio)sensing to include areas such as electrocatalysis, energy and corrosion, potentially reducing dependence on multichannel potentiostats.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Larissa M Andrade
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Marcelo Giglioti
- Metrohm Brasil Instrumentação Analítica Ltda, São Paulo, 05007-030, SP, Brazil
| | | | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 13566-590, SP, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil.
| |
Collapse
|
4
|
Lu T, Chen Y, Sun M, Chen Y, Tu W, Zhou Y, Li X, Hu T. Multifunctional Carbon-Based Nanocomposite Hydrogels for Wound Healing and Health Management. Gels 2025; 11:345. [PMID: 40422365 DOI: 10.3390/gels11050345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/28/2025] Open
Abstract
Compared with acute wounds, typical chronic wounds (infection, burn, and diabetic wounds) are susceptible to bacterial infection and hard to heal. As for the complexity of chronic wounds, biocompatible hydrogel dressings can be employed to regulate the microenvironment and accelerate wound healing with their controllable physical and chemical properties. Recently, various nanomaterials have been introduced into hydrogel networks to prepare functional nanocomposite hydrogels. Among them, carbon-based nanomaterials (CBNs) have attracted wide attention in the biomedical field due to their outstanding physicochemical properties. However, comprehensive reviews on the use of CBNs for multifunctional hydrogel wound dressings in the past 10 years are very scarce. This review focuses on the research progress on hydrogel dressings made with typical CBNs. Specifically, a series of CBNs (carbon dots, graphene quantum dots, fullerenes, nanodiamonds, carbon nanotubes, graphene, graphene oxide and reduced graphene oxide) employed in the preparation of hydrogels are described as well as carbon-based nanocomposite hydrogels (CBNHs) with versatility (conductivity, antibacterial, injectable and self-healing, anti-inflammatory and antioxidant properties, substance delivery, stimulus response and real-time monitoring). Moreover, applications of CBNHs in treating different chronic wounds are concretely discussed. This review may provide some new inspirations for the future development of CBNHs in wound care and tissue engineering.
Collapse
Affiliation(s)
- Tianyi Lu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Yaqian Chen
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Meng Sun
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Yuxian Chen
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Weilong Tu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Yuxuan Zhou
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
| | - Xiao Li
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
- Advanced Ocean Institute of Southeast University, Nantong 226010, China
| | - Tao Hu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China
- Advanced Ocean Institute of Southeast University, Nantong 226010, China
| |
Collapse
|
5
|
Tavakoli H, Najaflou M, Yarikhosroushahi A. Biomaterial-based chitosan nanohydrogel films: combination of Bistorta officinalis and Ca-doped carbon dots for improved blood clotting. J Biol Eng 2025; 19:31. [PMID: 40211334 PMCID: PMC11987453 DOI: 10.1186/s13036-025-00498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/01/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Bleeding and traumatic injuries are still a major issue necessitating the development of advanced hemostatic materials that are economical, biocompatible, and effective. Chitosan's (CS) haemostatic and biocompatible properties make it a promising wound-healing material, however, effective cross-linking is essential for appropriate physiochemical properties. In this study, calcium-doped carbon dots (CDs) produced from coriander leaves were used as cross-linking agents to improve the functional performance and structural integrity of nanohydrogel films. Furthermore, extract of the medicinal plant Bistorta officinalis (BEX), a traditional medicinal plant with strong hemostatic and antibacterial qualities, was incorporated into the hydrogel matrix. RESULTS Analysis and characterization of the synthesized CDs thoroughly confirmed that they have monodispersed spherical shape, negative zeta potential, and active functional groups which effectively cross-linked the chitosan matrix and increased the mechanical strength and stability of the film. Cytotoxicity and antibacterial results of the final films showed the desired cytocompatibility against Human skin fibroblast (HFF-1 cells) with over 80% viability at the highest concentration and effective antibacterial activity against gram-positive and gram-negative bacteria (further improved by cross-linking with CDs and incorporating BEX), respectively. The incorporation of BEX and CDs in hydrogel films significantly enhanced the film's blood-clotting ability with negligible hemolysis due to blood clotting index and hemolysis tests. CONCLUSIONS The findings of this study highlight the potential of biomaterial-based nano hydrogel film, composed of CS cross-linked with CDs and containing BEX, as a promising wound dressing with outstanding biocompatibility, minimal cytotoxicity, enhanced hemostatic efficacy, and strong antibacterial properties.
Collapse
Affiliation(s)
- Hassan Tavakoli
- Department of Chemistry, Faculty of Basic Sciences, Imam Ali University, Imam Khomeini Street, P.O. Box 1317893471, Tehran, 1317893471, Iran.
| | - Meysam Najaflou
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran
| | - Ahmad Yarikhosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 516615731, Iran.
| |
Collapse
|
6
|
Wu R, Wang Z, Fu Y, Jiang J, Chen YC, Liu T. High-Sensitive Hydrogel Optofluidic Microcavities for Heavy Metal Ion Detection. ACS Sens 2025; 10:2330-2338. [PMID: 40000614 DOI: 10.1021/acssensors.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Hydrogels have emerged as promising sensors for detecting heavy metal ions in fluids and have been extensively developed. However, monitoring of multiple target analytes in Chinese herbs remains challenging due to subtle chemical signals and the complex composition of the extracted solutions. To address these challenges, we developed a hydrogel optofluidic sensor to amplify analyte signals through strong light-matter interactions within the hydrogel. This sensing platform integrates a hydrogel film encapsulated in a whispering-gallery-mode (WGM) microcavity for the detection of heavy metal ions, such as Pb2+ and Hg2+. The 3D cross-linked hydrophilic polymer network facilitates ion penetration from analyte solutions, inducing distinct WGM resonance shifts. The red shift in the spectral wavelength serves as a parameter to quantify the content of heavy metal ions. By modification of the hydrogel with aptamers, the optofluidic sensors achieve high sensitivity and selectivity. Finally, the platform's performance was demonstrated using Chinese herbs with varying Pb2+ concentrations, highlighting its practical applicability in real-world scenarios. The proposed hydrogel microcavity exhibit a promising method for development of functional hydrogel sensors and healthcare applications.
Collapse
Affiliation(s)
- Ruijie Wu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Shanxi Jinshuo Biomedical Technology Co., Ltd., Jinzhong 030600, China
| | - Ziyihui Wang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yaoxin Fu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Junfeng Jiang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tiegen Liu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optical Fiber Sensing Metrology and Measurement, State Administration for Market Regulation, Tianjin 300072, China
| |
Collapse
|
7
|
Somchob B, Passornraprasit N, Hoven VP, Rodthongkum N. Dual-crosslinked zwitterionic hydrogel: a facile platform of wearable colorimetric urea sensors. Mikrochim Acta 2025; 192:204. [PMID: 40035872 DOI: 10.1007/s00604-025-07060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Zwitterionic hydrogel based on a dual-crosslinked network of pluronic F-127 dimethacrylate (PLU-DMA) and a terpolymer, poly(sulfobetaine methacrylate)-co-methacrylic acid-co-N-methacryloyloxyethyl tyrosine methylester) (PSBMM) was prepared and successfully applied as an enzyme-based colorimetric sensor of urea on diaper. The prepared hydrogel possessed good mechanical property while preserving its swelling capability. The urease-incorporated hydrogel exhibited a vivid color change from yellow to orange and red, enabling semi-qualitative detection of urea via naked eye in a linear range of 0-0.7 M covering a cut-off value of 0.3 M, which allow for distinguishing between the chronic kidney-prone patients from the normal individuals. The hydrogel was found to be non-toxic and demonstrated effective enzyme preservation by maintaining more than 80% of urease activity up to 14 days. This hydrogel-based urea sensor was also validated by laser desorption ionization mass spectrometry (LDI-MS) with satisfactory results. This platform demonstrated its potential integration on diaper for real-time screening of urea in the point-of-care diagnostics of chronic kidney disease (CKD).
Collapse
Affiliation(s)
- Benjawan Somchob
- Nanoscience and Technology Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nichaphat Passornraprasit
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nadnudda Rodthongkum
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Philip JJ, C S A, Kottam N, Hunsur Ravikumar C, Balakrishna RG. Reliability of Multi-Emissive Carbon Quantum Dots for Multiplexing; Assessing the Figures of Merit. J Fluoresc 2024:10.1007/s10895-024-04041-9. [PMID: 39589686 DOI: 10.1007/s10895-024-04041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Incredible properties of quantum dots (QDs) have once again been acclaimed with this year's (2023) Nobel prize in chemistry. On the other hand, the invention of multicolour molecular imaging of cell surface receptors for tumour diagnosis by Koyama and group has opened up a new era in diagnostics. Among them carbon quantum dots (CQDs) are interesting class of fluorescent nanomaterials, superior in terms of low toxicity, high solubility and biocompatibility along with simple and cost-effective synthesis processes unlike the traditional metal chalcogenide or perovskite quantum dots. Multi emissive fluorescence property of these carbon quantum dots are very useful in multiplex sensing. Their excellent biocompatibility and low toxicity have attracted researchers to use them extensively for biosensing and imaging of multiple analytes at a time. Core state emission from π-domains and surface state emissions of functional groups surrounding CQDs play a major role in achieving the multicolour emissions and this review discusses the various strategies used to achieve desired multi colour emissions, yet preserving their stability, non-interactive emissive states and quantum yields. Their fine tuning via variation in temperature, pH, time, and heteroatom doping has been comprehensively discussed. A thorough history compared to a list of characteristics for creating effective multicolour CQDs will point us in the proper route. This minireview also assesses the electronic band structure of these multicolour CQDs, their stability with respect to multi emissions, photoluminescence quantum yields, approaches employed for tunability of their optical band gaps, and also enhancement of carrier lifetimes, to arrive at conclusions on the reliability of these materials for multiplexing. The mechanisms namely chemical coupling, FRET, On-Off, Ab-antigen interactions involved in sensing mechanisms involving these materials are analysed in depth. Ultimately, the present obstacles and future directions for the use of these CQDs in sensing applications are discussed.
Collapse
Affiliation(s)
- Jomy Jose Philip
- Centre for Nano and Material Sciences, Jain Global Campus, Jain Deemed-to-be-University, Bangalore, 562112, India
| | - Aishwarya C S
- Department of Chemistry, M S Ramaiah Institute of Technology, Bangalore, 560054, India
| | - Nagaraju Kottam
- Department of Chemistry, M S Ramaiah Institute of Technology, Bangalore, 560054, India
| | - Chandan Hunsur Ravikumar
- Centre for Nano and Material Sciences, Jain Global Campus, Jain Deemed-to-be-University, Bangalore, 562112, India.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain Global Campus, Jain Deemed-to-be-University, Bangalore, 562112, India.
| |
Collapse
|
9
|
Zhu G, Hou J, Xu J, Li J, Wang C, Yi Y. Enhanced peroxidase-like activity based on electron transfer between platinum nanoparticles and Ti 3C 2T X MXene nanoribbons coupled smartphone-assisted hydrogel platform for detecting mercury ions. Anal Chim Acta 2024; 1329:343250. [PMID: 39396270 DOI: 10.1016/j.aca.2024.343250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/02/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Heavy metal pollution poses a serious threat to the ecological environment. Mercury ion (Hg2+) is a class of highly toxic heavy metal ions, which is bioaccumulative, difficult to breakdown, and has a significant affinity with sulfur and thiol-containing proteins, which seriously affects environmental safety and human health. Nanozyme-based sensing methods are expected to be used to detect toxic heavy metal ions. However, the application of precious metal nanozymes to develop portable sensors with simplicity, high stability, and high sensitivity has not been explored to a large extent. RESULTS In this paper, based on MXene's unique adsorption capacity for certain precious metal ions, PtNPs/Ti3C2TXNR composites were successfully prepared by in-situ growth of Pt nanoparticles (PtNPs) on the surface of Ti3C2TX MXene nanoribbons (Ti3C2TXNR) using the hydrothermal technique. Experimental data revealed PtNPs/Ti3C2TXNR exhibited superior peroxidase-like activity, attributed to the synergistic effect of well-dispersed ultrasmall PtNPs and electron transfer effect. Hg2+ can significantly inhibit enzyme-like activity of PtNPs/Ti3C2TXNR due to specific capture and partial in-situ reduction of PtNPs, so a colorimetric sensor was constructed for ultra-trace detection of Hg2+ with a linear range of 0.2 nM and 400 nM. Furthermore, using the portable detecting capabilities of smartphones and hydrogel, a smartphone-assisted hydrogel sensing platform of Hg2+ was constructed. Notably, the two-mode sensing platforms exhibited outstanding detection performance with LOD values as low as 15 pM (colorimetric) and 26 pM (hydrogel), respectively, superior to recently reported nanozyme-based Hg2+ sensors. SIGNIFICANCE Compared with other methods, the PtNPs/Ti3C2TXNR-based dual-mode sensor designed in this paper has superior sensitivity, high selectivity, simple operation and portability. In particular, the dual-output sensing strategy enables self-confirmation of detection results, greatly improving the reliability of the sensor, and is expected to be used for the on-site determination of trace mercury ions.
Collapse
Affiliation(s)
- Gangbing Zhu
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, PR China
| | - Jieling Hou
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Juan Xu
- Guangzhou Customs District Technology Center, Tower B, Guangzhou Guojian Building, No 66, Huacheng Avenue, Zhujiang New Town, Guangzhou, 510470, PR China
| | - Jing Li
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chenxu Wang
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yinhui Yi
- School of the Environment and Safety Engineering, And Collaborative Innovation Center of Technology and Material of Water Treatment, Jiangsu University, Zhenjiang, 212013, PR China; Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, PR China; Fujian Key Laboratory of Agro-products Quality & Safety, Fuzhou, 350003, PR China.
| |
Collapse
|
10
|
Wen X, Zong S, Zhao Q, Wu J, Liu L, Wang K, Jiang J, Duan J. Environmentally stable and rapidly polymerized tin-tannin catalytic system hydroxyethyl cellulose hydrogel for wireless wearable sensing. Int J Biol Macromol 2024; 278:134696. [PMID: 39147350 DOI: 10.1016/j.ijbiomac.2024.134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
In recent years, flexible sensors constructed mainly from hydrogels have played an indispensable role in several fields. However, the traditional hydrogel preparation process involves complex and time-consuming steps and the freezing or volatilization of water in the water gel in extreme environments greatly limits the further use of the sensor. Therefore, an ionic conductive hydrogel (SnHTD) was designed, which was composed of tannic acid (TA), metal ions Sn2+, hydroxyethyl cellulose (HEC), and acrylamide (AM) in a deep eutectic solvent (DES) and water binary solvent. It is worth noting that the gel time is shortened to less than 3 min by introducing the Sn-TA redox system. The addition of DES makes the hydrogel have a wide temperature tolerance range (-20 to 60 °C) and the ability to store for a long time (30 days). The introduction of HEC increased the tensile stress of hydrogel from 140.17 kPa to 219.89 kPa. Additionally, the hydrogel also has high conductivity, repeatable adhesion and UV shielding properties. In general, this research opens up a new way for room temperature polymerization of environmentally resistant hydrogel materials and effectively meets the growing demand for wireless wearable sensing.
Collapse
Affiliation(s)
- Xiaolu Wen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Shiyu Zong
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Qian Zhao
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jingyu Wu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Liujun Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
11
|
Xiang Y, Zhao Y, Jiang Y, Feng J, Zhang X, Su W, Zhou Y, Wei P, Low SS, Li HN. Battery-Free and Multifunctional Microfluidic Janus Wound Dressing with Biofluid Management, Multi-Indicator Monitoring, and Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50321-50334. [PMID: 39264683 DOI: 10.1021/acsami.4c09891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The sophisticated environment of chronic wounds, characterized by prolonged exudation and recurrent bacterial infections, poses significant challenges to wound recovery. Recent advancements in multifunctional wound dressings fall short of providing comprehensive, accurate, and comfortable treatment. To address these issues, a battery-free and multifunctional microfluidic Janus wound dressing (MM-JWD) capable of three functions, including exudate management, antibacterial properties, and multiple indications of wound infection detection, has been developed. During the treatment, the fully soft microfluidic Janus membrane not only demonstrated stable unidirectional fluid transport capabilities under various skin deformations for a longer period but also provided antibacterial effects through surface treatment with chitosan quaternary ammonium salts and poly(vinyl alcohol). Furthermore, integrating multiple colorimetric sensors within the Janus membrane's microchannels and a dual-layer structure enabled simultaneous monitoring of the wound's pH, uric acid, and temperature. The monitoring was facilitated by smartphone recognition of color changes in the sensors. In vivo and in vitro tests confirmed the exudate management, antibacterial, and sensing capabilities of the MM-JWD, proving its efficacy in monitoring and promoting the healing of wounds. Overall, this study provides a valuable method for the design of multifunctional wound dressings for chronic wound care.
Collapse
Affiliation(s)
- Yanshu Xiang
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China
| | - Yongjie Zhao
- Faculty of Mechanical Engineering & Mechanic, Ningbo University, Ningbo 315211, China
| | - Yifan Jiang
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| | - Jiarui Feng
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| | - Xiaoyi Zhang
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Wei Su
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Yingjie Zhou
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Peng Wei
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Sze Shin Low
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China
| | - Hao Nan Li
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, Ningbo 315100, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| |
Collapse
|
12
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
13
|
Zhang H, Gao L, Qi X, Ma H, Zhang S, Wang Z, Jin L, Shen Y. An injectable chitosan-based hydrogel incorporating carbon dots with dual enzyme-mimic activities for synergistically treatment of bacteria infected wounds. Colloids Surf B Biointerfaces 2024; 241:114006. [PMID: 38870646 DOI: 10.1016/j.colsurfb.2024.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Bacterial infections pose a serious threat to human health, and the emergence of superbugs and the growing antibiotic resistance phenomenon have made the development of novel antimicrobial products. In this paper, an ultrasmall Cu, N co-doped carbon dots (CDs-Cu-N) with excellent peroxidase mimic activity and enhanced catalase mimic activity was successfully prepared and anchored to an injectable chitosan (CS)-based hybrid hydrogel. As expected, the CDs-Cu-N-H2O2-CS hybrid hydrogel maintains the excellent enzyme-mimicking properties of CDs-Cu-N and shows superior antibacterial property, which has been proven to effectively promote the healing of S. aureus-infected wounds with good biocompatibility. Benefitting from the dual-enzyme-mimic activity of CDs-Cu-N, the hybrid hydrogel not only can catalyze the generation of highly toxic ROS from low concentration of H2O2 to inhibit the bacterial infections, but also can significantly promote the wound tissue repair and regeneration by improving the anoxic microenvironment and promoting neovascularization. In addition, this hybrid hydrogel also possessed excellent injectability and moldability. It can adapt to various the irregular shapes of acute wounds, maintaining a moist and safe microenvironment while prolonging the action time of nanozyme on wounds, thus promoting wound healing. This injectable hybrid hydrogel shows great potential applications in the field of wound infection management.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Lu Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Xiaodan Qi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Huijun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Shengnan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zhifei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| |
Collapse
|
14
|
Fu Q, Lu K, Sun S, Dong Z. Recent advances in fluorescence and afterglow of CDs in matrices. NANOSCALE HORIZONS 2024; 9:1072-1098. [PMID: 38655703 DOI: 10.1039/d4nh00093e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Carbon dots (CDs) are novel nanomaterials with dimensions less than 10 nm that have attracted much attention due to their outstanding optical properties. However, the development of solid-state fluorescence and afterglow methods has been relatively slow, although the properties of these materials under liquid conditions have been extensively studied. In recent years, embedding CDs in a matrix has been shown to prevent aggregation quenching and inhibit nonradiative transitions, thus realizing solid-state fluorescence and afterglow, which has greatly broadened the research and application areas of CDs. In terms of hydrogen bonding, ionic bonding, covalent bonding and spatial confinement, the interactions between CDs and matrices can effectively realize and improve the solid-state fluorescence and afterglow effects of CDs. Recent applications of CDs in matrices in optoelectronics, information security, sensing, biotherapeutics and imaging are also summarized. Finally, we summarize the challenges and developments of CDs in matrices.
Collapse
Affiliation(s)
- Qiang Fu
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| | - Kangzhi Lu
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| | - Shouhong Sun
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| | - Zhanhua Dong
- College of Engineering, Qufu Normal University, Rizhao, Shandong, 276826, People's Republic of China.
| |
Collapse
|
15
|
Huang D, Du J, Luo F, He G, Zou M, Wang Y, Lin Z, Wu D, Weng Z. Injectable Hydrogels with Integrated Ph Probes and Ultrasound-Responsive Microcapsules as Smart Wound Dressings for Visual Monitoring and On-Demand Treatment of Chronic Wounds. Adv Healthc Mater 2024; 13:e2303379. [PMID: 38211342 DOI: 10.1002/adhm.202303379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/07/2024] [Indexed: 01/13/2024]
Abstract
Hydrogel dressings capable of infection monitoring and precise treatment administration show promise for advanced wound care. Existing methods involve embedd ingorganic dyes or flexible electronics into preformed hydrogels, which raise safety issues and adaptability challenges. In this study, an injectable hydrogel based smart wound dressing is developed by integrating food-derived anthocyanidin as a visual pH probe for infection monitoring and poly(L-lactic acid) microcapsules as ultrasound-responsive delivery systems for antibiotics into a poly(ethylene glycol) hydrogel. This straightforwardly prepared hydrogel dressing maintains its favorable properties for wound repair, including porous morphology and excellent biocompatibility. In vitro experiments demonstrated that the hydrogel enabled visual assessment of pH within the range of 5 ∼ 9.Meanwhile, the release of antibiotics could be triggered and controlled by ultrasound. In vivo evaluations using infected wounds and diabetic wounds revealed that the wound dressing effectively detected wound infection by monitoring pH levels and achieved antibacterial effects through ultrasound-triggered drug release. This led to significantly enhanced wound healing, as validated by histological analysis and the measurement of inflammatory cytokine levels. This injectable hydrogel-based smart wound dressing holds great potential for use in clinical settings to inform timely and precise clinical intervention and in community to improve wound care management.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiahao Du
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Gang He
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| |
Collapse
|
16
|
Li J, Wei M, Gao B. A Review of Recent Advances in Microneedle-Based Sensing within the Dermal ISF That Could Transform Medical Testing. ACS Sens 2024; 9:1149-1161. [PMID: 38478049 DOI: 10.1021/acssensors.4c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Interstitial fluid (ISF) has attracted extensive attention in an extremely wide range of areas due to its unique advantages, such as portability, high precision, comfortable operation, and superior stability. In recent years, the microneedle (MN) technique has been considered to be an excellent tool for extracting ISF because it is painless and noninvasive. Recent reports have shown that MN has good application prospects in ISF extraction. In this review, we provide comprehensive and in-depth insight into integrated MN devices for ISF detection, covering the basic structure as well as the fabrication of integrated MN devices and various applications in ISF extraction. Challenges and prospects are highlighted, with a discussion on how to transition such MN-integrated devices toward personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Jun Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Meng Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Djordjevic I, Ellis E, Singh J, Ali N, Pena EM, Rajarethinam R, Manikandan L, Goh J, Lim S, Steele T. Color changing bioadhesive barrier for peripherally inserted central catheters. Biomater Sci 2024; 12:1502-1514. [PMID: 38284150 DOI: 10.1039/d3bm01347b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bacteria migration at catheter insertion sites presents a serious complication (bacteraemia) with high mortality rates. One strategy to mediate bacteraemia is a physical barrier at the skin-catheter interface. Herein a colorimetric biosensor adhesive (CathoGlu) is designed and evaluated for both colorimetric detection of bacterial infection and application as a bacteria barrier. The design intent combines viscous, hydrophobic bioadhesive with an organic pH indicator (bromothymol blue). Visual observation can then distinguish healthy skin at pH = ∼5 from an infected catheter insertion site at pH = ∼8. The liquid-to-biorubber transition of CathoGlu formulation occurs via a brief exposure to UVA penlight, providing an elastic barrier to the skin flora. Leachates from CathoGlu demonstrate no genotoxic and skin sensitization effect, assessed by OECD-recommended in vitro and in chemico assays. The CathoGlu formulation was found non-inferior against clinically approved 2-octyl-cyanoacrylate (Dermabond™), and adhesive tape (Micropore™) within an in vivo porcine model. CathoGlu skin adhesive provides new opportunities to prevent sepsis in challenging clinical situations.
Collapse
Affiliation(s)
- Ivan Djordjevic
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| | - Elizabeth Ellis
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| | - Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335
- School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Naziruddin Ali
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| | - Edgar M Pena
- National Large Animal Research Facility, SingHealth Experimental Medicine Centre, Academia 20 College Road, Singapore 169856
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Lakshmanan Manikandan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Jason Goh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457
| | - Terry Steele
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Block N4.1, Singapore 639798.
| |
Collapse
|
18
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Han J, Zhang Y, Lv X, Fan D, Dong S. A facile, low-cost bimetallic iron-nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application. NANOSCALE 2024; 16:1394-1405. [PMID: 38165141 DOI: 10.1039/d3nr05028a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As a kind of well-known disease biomarker, uric acid (UA) is closely associated with normal metabolism and health. Despite versatile nanozymes facilitating the analysis of UA, most previous works could only generate single-signal outputs with unsatisfactory detection performance. Exploring a novel ratiometric fluorescent UA sensor with high sensitivity, reliability and portable sensing ability based on facile, low-cost nanozymes is still challenging. Herein, we report the first metal-organic-framework (MOF) nanozyme-originated ratiometric fluorescent UA sensor based on Fe3Ni-MOF-NH2 propelled UA/uricase/o-phenylenediamine tandem catalytic reaction. Different from previous reports, the peroxidase-like property and fluorescence of Fe3Ni-MOF-NH2 were simultaneously employed. In the absence of UA, only the MOF's fluorescence at 430 nm (FI430) can be observed, while the addition of UA will initiate UA/uricase catalytic reaction, and the generated H2O2 could oxidize o-phenylenediamine into highly fluorescent 2,3-diaminophenazine (DAP) (emission at 565 nm, FI565) under the catalysis of the MOF nanozyme. Coincidently, MOF's fluorescence can be quenched by DAP via the inner filter effect, resulting in a low FI430 value and high FI565 value, respectively. Therefore, H2O2 and UA can be alternatively detected through monitoring the above contrary fluorescence changes. The limit of detection for UA is 24 nM, which is much lower than those in most previous works, and the lowest among nanozyme-based ratiometric fluorescent UA sensors reported to date. Moreover, the portable sensing of UA via smartphone-based RGB analysis was facilely achieved by virtue of the above nanozyme-propelled tandem catalytic system, and MOF nanozyme-based molecular contrary logic pairs were further implemented accordingly.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
20
|
Bakshi S, Sahoo PK, Li K, Johnson S, Raxworthy MJ, Krauss TF. Nanophotonic and hydrogel-based diagnostic system for the monitoring of chronic wounds. Biosens Bioelectron 2023; 242:115743. [PMID: 37826878 DOI: 10.1016/j.bios.2023.115743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Chronic wounds present a major healthcare burden, yet most wounds are only assessed superficially, and treatment is rarely based on the analysis of wound biomarkers. This lack of analysis is based on the fact that sampling of wound biomarkers is typically invasive, leading to a disruption of the wound bed while biomarker detection and quantification is performed in a remote laboratory, away from the point of care. Here, we introduce the diagnostic element of a novel theranostic system that can non-invasively sample biomarkers without disrupting the wound and that can perform biomarker quantification at the point of care, on a short timescale. The system is based on a thermally switchable hydrogel scaffold that enhances wound healing through regeneration of the wound tissue and allows the extraction of wound biomarkers non-destructively. We demonstrate the detection of two major biomarkers of wound health, i.e., IL-6 and TNF-α, in human matrix absorbed into the hydrogel dressing. Quantification of the biomarkers directly in the hydrogel is achieved using a chirped guided mode resonant biosensor and we demonstrate biomarker detection within the clinically relevant range of pg/mL to μg/mL concentrations. We also demonstrate the detection of IL-6 and TNF-α at concentration 1 ng/mL in hydrogel dressing absorbed with clinical wound exudate samples. The high sensitivity and the wide dynamic range we demonstrate are both essential for the clinical relevance of our system. Our test makes a major contribution towards the development of a wound theranostic for guided treatment and management of chronic wounds.
Collapse
Affiliation(s)
- Shrishty Bakshi
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
| | - Pankaj K Sahoo
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Kezheng Li
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Steven Johnson
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | | | - Thomas F Krauss
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| |
Collapse
|
21
|
Tavakoli M, Mirhaj M, Varshosaz J, Al-Musawi MH, Almajidi YQ, Danesh Pajooh AM, Shahriari-Khalaji M, Sharifianjazi F, Alizadeh M, Labbaf S, Shahrebabaki KE, Nasab PM, Firuzeh M, Esfahani SN. Keratin- and VEGF-Incorporated Honey-Based Sponge-Nanofiber Dressing: An Ideal Construct for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55276-55286. [PMID: 37990423 DOI: 10.1021/acsami.3c11093] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
To overcome the drawbacks of single-layered wound dressings, bilayer dressings are now introduced as an alternative to achieve effective and long-term treatment. Here, a bilayer dressing composed of electrospun nanofibers in the bottom layer (BL) and a sponge structure as the top layer (TL) is presented. Hydrophilic poly(acrylic acid) (PAAc)-honey (Hny) with interconnected pores of 76.04 μm was prepared as the TL and keratin (Kr), Hny, and vascular endothelial growth factor (VEGF) were prepared as the BL. VEGF indicates a gradual release over 7 days, promoting angiogenesis, as proven by the chick chorioallantoic membrane assay and in vivo tissue histomorphology observation. Additionally, the fabricated dressing material indicated a satisfactory tensile profile, cytocompatibility for human keratinocyte cells, and the ability to promote cell attachment and migration. The in vivo animal model demonstrated that the full-thickness wound healed faster when it was covered with PAAc-Hny/Hny-Kr-VEGF than in other groups. Additionally, faster blood vessel formation, collagen synthetization, and epidermal layer generation were also confirmed, which have proven efficient healing acceleration in wounds treated with synthesized bilayer dressings. Our findings indicated that the fabricated material can be promising as a functional wound dressing.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Pharmacy Student's Research Committee, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad 10052, Iraq
| | - Yasir Q Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad 10047, Iraq
| | - Amir Mohammad Danesh Pajooh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439956191, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Pegah Madani Nasab
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahboubeh Firuzeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Salar Nasr Esfahani
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| |
Collapse
|
22
|
Wang G, Wang X, Liu W, Liu X, Song Z, Yu D, Li G, Ge S, Wang H. Establishing a Corrugated Carbon Network with a Crack Structure in a Hydrogel for Improving Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48462-48474. [PMID: 37812139 DOI: 10.1021/acsami.3c10949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Electronic conductive hydrogels have prompted immense research interest as flexible sensing materials. However, establishing a continuous electronic conductive network within a hydrogel is still highly challenging. Herein, we develop a new strategy to establish a continuous corrugated carbon network within a hydrogel by embedding carbonized crepe paper into the hydrogel with its corrugations perpendicular to the stretching direction using a casting technique. The corrugated carbon network within the as-prepared composite hydrogel serves as a rigid conductive network to simultaneously improve the tensile strength and conductivity of the composite hydrogel. The composite hydrogel also generates a crack structure when it is stretched, enabling the composite hydrogel to show ultrahigh sensitivity (gauge factor = 59.7 and 114 at strain ranges of 0-60 and 60-100%, respectively). The composite hydrogel also shows an ultralow detection limit of 0.1%, an ultrafast response/recovery time of 75/95 ms, and good stability and durability (5000 cycles at 10% strain) when used as a resistive strain sensing material. Moreover, the good stretchability, adhesiveness, and self-healing ability of the hydrogel were also effectively retained after the corrugated carbon network was introduced into the hydrogel. Because of its outstanding sensing performance, the composite hydrogel has potential applications in sensing various human activities, including accurately recording subtle variations in wrist pulse waves and small-/large-scale complex human activities. Our work provides a new approach to develop economical, environmentally friendly, and reliable electronic conductive hydrogels with ultrahigh sensing performance for the future development of electronic skin and wearable devices.
Collapse
Affiliation(s)
- Guixing Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xueyan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
23
|
Hu X, Wang G, Fang K, Li R, Dong C, Shi S, Li H. The construction of Fe-porphyrin nanozymes with peroxidase-like activity for colorimetric detection of glucose. Anal Biochem 2023:115224. [PMID: 37393976 DOI: 10.1016/j.ab.2023.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
As a type of nanomaterials with enzyme-mimetic catalytic properties, nanozymes have attracted wide concern in biological detection. H2O2 was the characteristic product of diverse biological reactions, and the quantitative analysis for H2O2 was an important way to detect disease biomarkers, such as acetylcholine, cholesterol, uric acid and glucose. Therefore, there is of great significance for developing a simple and sensitive nanozyme to detect H2O2 and disease biomarkers by combining with corresponding enzyme. In this work, Fe-TCPP MOFs were successfully prepared by the coordination between iron ions and porphyrin ligands (TCPP). In addition, the peroxidase (POD) activity of Fe-TCPP was proved, in detail, Fe-TCPP could catalyze H2O2 to produce ·OH by Fenton reaction. Herein, glucose oxidase (GOx) was chosen as the model to build cascade reaction by combining Fe-TCPP to detect glucose. The results indicated glucose could be detected by this cascade system selectively and sensitively, and the limit of detection of glucose was achieved to 0.12 μM. Furthermore, a portable hydrogel (Fe-TCPP@GEL) was further established, which encapsulated Fe-TCPP MOFs, GOx and TMB in one system. This functional hydrogel could be applied for colorimetric detection of glucose by coupling with a smartphone easily.
Collapse
Affiliation(s)
- Xiaochun Hu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China; School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guanghua Wang
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiaotong University, School of Medicine, China.
| | - Kang Fang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ruihao Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuo Shi
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Hui Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|