1
|
Yi S, Yan Z, Xiao Y, Wang Z, Ye C, Zhang J, Qiu H, Ning P, Yang D, Du N. Sequencing-Dependent Impact of Carbon Coating on Microstructure Evolution and Electrochemical Performance of Pre-lithiated SiO Anodes: Enhanced Efficiency and Stability via Pre-Coating Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403847. [PMID: 39087374 DOI: 10.1002/smll.202403847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/30/2024] [Indexed: 08/02/2024]
Abstract
Silicon monoxide (SiO) has attracted considerable interest as anode material for lithium-ion batteries (LIBs). However, their poor initial Coulombic efficiency (ICE) and conductivity limit large-scale applications. Prelithiation and carbon-coating are common and effective strategies in industry for enhancing the electrochemical performance of SiO. However, the involved heat-treatment processes inevitably lead to coarsening of active silicon phases, posing a significant challenge in industrial applications. Herein, the differences in microstructures and electrochemical performances between prelithiated SiO with a pre-coated carbon layer (SiO@C@PLi) and SiO subjected to carbon-coating after prelithiation (SiO@PLi@C) are investigated. A preliminary carbon layer on the surface of SiO before prelithiation is found that can suppress active Si phase coarsening effectively and regulate the post-prelithiation phase content. The strategic optimization of the sequence where prelithiation and carbon-coating processes of SiO exert a critical influence on its regulation of microstructure and electrochemical performances. As a result, SiO@C@PLi exhibits a higher ICE of 88.0%, better cycling performance and lower electrode expansion than SiO@PLi@C. The pouch-type full-cell tests demonstrate that SiO@C@PLi/Graphite||NCM811 delivers a superior capacity retention of 91% after 500 cycles. This work provides invaluable insights into industrial productions of SiO anodes through optimizing the microstructure of SiO in prelithiation and carbon-coating processes.
Collapse
Affiliation(s)
- Si Yi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhilin Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiming Xiao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhen Wang
- Carbon One New Energy (Hangzhou) Co., Ltd., Hangzhou, 311100, China
| | - Cuicui Ye
- Carbon One New Energy (Hangzhou) Co., Ltd., Hangzhou, 311100, China
| | - Jingwen Zhang
- Shenzhen Yanyi New Materials Co., Ltd., Shenzhen, 518110, China
| | - Huangjie Qiu
- Carbon One New Energy (Hangzhou) Co., Ltd., Hangzhou, 311100, China
| | - Pengpeng Ning
- Carbon One New Energy (Hangzhou) Co., Ltd., Hangzhou, 311100, China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ning Du
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Duan X, Yu J, Liu Y, Lan Y, Zhou J, Lu B, Zan L, Fan Z, Zhang L. A highly conductive and robust micrometre-sized SiO anode enabled by an in situ grown CNT network with a safe petroleum ether carbon source. Phys Chem Chem Phys 2024; 26:12628-12637. [PMID: 38597698 DOI: 10.1039/d4cp00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
SiO-based materials as lithium-ion anodes have attracted huge attention owing to their ultrahigh capacity. However, they usually undergo severe volume expansion over the repeated lithiation/delithiation processes and have low electronic conductivity, leading to an inferior cycling stability and poor rate capability. In this study, carbon nanotubes in situ grown on the surface of commercially available micro-sized SiO (D50 = 5 μm) were prepared. The conductive network composed of one-dimensional carbon nanotubes could enhance its conductivity and enhance the structural stability during the cycling. The synthesized 3D-SiO@C material demonstrates good long-term cycling stability, with a reversible capacity of up to 687.7 mA h g-1 after 1000 cycles, and it maintains a high reversible capacity of 736.8 mA h g-1, even at a high current density of 1 A g-1.
Collapse
Affiliation(s)
- Xiaobo Duan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Jiaao Yu
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Yancai Liu
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Yanqiang Lan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Jian Zhou
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Birou Lu
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Lina Zan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Zimin Fan
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| | - Lei Zhang
- Department of Materials Science & Engineering, Xi'an University of Science and Technology, Xi'an710054, China.
| |
Collapse
|