1
|
Abeysinghe H, Ma X, Tsige M. PFAS removal via adsorption: A synergistic review on advances of experimental and computational approaches. CHEMOSPHERE 2025; 377:144323. [PMID: 40153986 DOI: 10.1016/j.chemosphere.2025.144323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), commonly known as "forever chemicals", have become a major focus of current research due to their toxicity and persistence in the environment. These synthetic compounds are notoriously difficult to degrade, accumulating in water systems and posing long-term health and environmental risks. Adsorption is one of the most investigated technologies for PFAS removal. This review comprehensively reviewed the PFAS adsorption process, focusing not only on the adsorption itself, but also on the behavior of PFAS in the aquatic environment prior to adsorption because these behaviors directly affect PFAS adsorption. Significantly, this review summarized in detail the advances made in PFAS adsorption from the computational approach and emphasized the importance of integrated experimental and computational studies in gaining molecular-level understanding on the adsorption mechanisms of PFAS. Toward the end, the review identified several critical research gaps and suggested key interdisciplinary research needs for further advancing our understanding on PFAS adsorption.
Collapse
Affiliation(s)
- Hansini Abeysinghe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA.
| |
Collapse
|
2
|
Jeon J, Chung CH, Roh S, Bergman E, Wang M, Su X. Olefin-Assisted Electrochemical Recycling of Homogeneous Hydrosilylation Catalysts in Nonpolar Media. JACS AU 2025; 5:1221-1231. [PMID: 40151264 PMCID: PMC11937960 DOI: 10.1021/jacsau.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/15/2025] [Accepted: 02/03/2025] [Indexed: 03/29/2025]
Abstract
Homogeneous platinum catalysts for hydrosilylation are essential for the chemical industry and society, through the production of commodities such as functional silicones. However, the high boiling points of the products and the low concentration of the homogeneous catalysts make the implementation of traditional separation methods difficult. Catalyst loss becomes a core sustainability and techno-economic challenge. In addition, the highly active platinum-based catalysts for hydrosilylation have remarkable susceptibility to deactivation upon reaction completion. Recently, redox-mediated electrosorption has been successfully demonstrated in a number of electrically conductive media as a separation platform. However, industrial hydrosilylation systems are carried out in highly nonconductive media. Therefore, developing an electrochemical recycling system in realistic, nonconductive hydrosilylation media can be transformative for sustainable homogeneous catalysis and chemical manufacturing. Here, we overcome these challenges for hydrosilylation catalyst recycling by introducing a strongly coordinating vinyl ligand and enabling the recycling of these Pt catalysts in solvent-free, nonpolar reactant media through two distinct loops for catalyst recycling and electrosorbent regeneration. The coordinating olefin ligand maintains catalytic activity after the reaction and prevents particle aggregation, a primary mechanism for deactivation. The Pt catalyst stabilized by the coordinated ligand can be reversibly adsorbed and released by the electrosorbent, demonstrating 100% catalytic activity retention and over 90% Pt release efficiency. A techno-economic analysis supports the economic potential of the electrochemical recycling system, with cost savings of >5k USD/kgPt. By combining chemical design and electrochemical engineering, we demonstrate the sustainable electrochemical recycling of industrially relevant hydrosilylation catalysts in practical nonconductive media.
Collapse
Affiliation(s)
- Jemin Jeon
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - Ching-Hsiu Chung
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - Shisang Roh
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - Evan Bergman
- Process
R&D, the Dow Chemical Company, Midland, Michigan 48674, United States
| | - Miao Wang
- Core
R&D, the Dow Chemical Company, Midland, Michigan 48674, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Fang Q, Yan J, Wang W, Wang X, Chen J, Xu Y, Deng X, Li P, Fa S, Zhang Q, Yan Y. Metallo-Polyampholyte Hydrogel Based on a Y-Shaped Amphoteric Monomer with Robust Antibacterial and Antifouling Performance. Biomacromolecules 2025; 26:1498-1506. [PMID: 39954297 DOI: 10.1021/acs.biomac.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
A Y-shaped metallo-amphoteric monomer with cobaltocenium as the cation and sulfonyl as the anion was synthesized and used to prepare the corresponding metallo-polyampholyte hydrogel (PAH). The cobaltocenium in the amphoteric system and its Y-shape may introduce tunable supramolecular interactions, providing regulation of hydration properties and biomedical performance. Such metallo-PAH showed a higher water swelling ratio and comparable mechanical performance in comparison with its organic counterpart, polysulfobetaine methacrylate hydrogel (SBMA-PAH). Moreover, the metallo-PAH showed a good inhibitory effect against Gram-negative bacteria, Gram-positive bacteria, as well as corresponding drug-resistant bacteria. Interestingly, it was found that the metallo-PAH achieved as high as 95% antifouling property against different proteins in both short-term (2 h) and long-term (24 h) tests, which is much better than that of the SBMA-PAH (<50%). It is believed that the concept of "metallo-polyampholyte" may expand the field of classical polyampholytes and related materials, thus opening up a new avenue to design powerful antifouling materials.
Collapse
Affiliation(s)
- Qianyi Fang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Jing Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Weiwei Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xueting Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Jingjie Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yunxin Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Xudong Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Peng Li
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Shixin Fa
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Qiuyu Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| | - Yi Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, China
| |
Collapse
|
4
|
Kocheva AN, Deriabin KV, Perevyazko I, Bokach NA, Boyarskiy VP, Islamova RM. When a Side Reaction Is a Benefit: A Catalyst-Free Route to Obtain High-Molecular Cobaltocenium-Functionalized Polysiloxanes by Hydroamination. Polymers (Basel) 2024; 16:2887. [PMID: 39458715 PMCID: PMC11510845 DOI: 10.3390/polym16202887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cobaltocenium-containing (co)polysiloxanes (Cc-PDMSs) with terminal and side groups were synthesized by the reaction of catalyst-free hydroamination between ethynylcobaltocenium hexafluorophosphate and polysiloxanes comprising amino moieties as terminal and side groups. The conversion of NH2 groups in the polymers reaches 85%. The obtained (co)polysiloxanes "gelate" due to an increase in their molecular weight by approx. 30 times, when stored at room temperature over one week. "Gelated" Cc-PDMSs remain soluble in most polar solvents. The structure of Cc-PDMSs and the mechanism of "gelation" were established by 1H, 13C{1H}, 29Si{1H}, 19F{1H}, 31P{1H} nuclear magnetic resonance, infrared, ultraviolet-visible, and X-ray photoelectron spectroscopies. As determined by cyclic voltammetry, Cc-PDMSs possess redox properties (CoII/CoIII transitions at E1/2 = -1.8 and -1.3 V before and after "gelation", respectively). This synthetic approach allows to increase the molecular weights of the synthesized polysiloxanes functionalized with cobaltocenium groups easily, leading to their higher film-forming ability, which is desirable for some electronic applications. Cc-PDMSs can be utilized as redox-active polymer films in modified electrodes, electrochromic devices, redox-active coatings, and components for batteries.
Collapse
Affiliation(s)
- Anastasia N. Kocheva
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (A.N.K.)
| | - Konstantin V. Deriabin
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (A.N.K.)
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia;
| | - Nadezhda A. Bokach
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (A.N.K.)
| | - Vadim P. Boyarskiy
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (A.N.K.)
| | - Regina M. Islamova
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia; (A.N.K.)
| |
Collapse
|
5
|
Kim N, Elbert J, Shchukina E, Su X. Integrating redox-electrodialysis and electrosorption for the removal of ultra-short- to long-chain PFAS. Nat Commun 2024; 15:8321. [PMID: 39333533 PMCID: PMC11437098 DOI: 10.1038/s41467-024-52630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
A major challenge in per- and polyfluoroalkyl substances (PFAS) remediation has been their structural and chemical diversity, ranging from ultra-short to long-chain compounds, which amplifies the operational complexity of water treatment and purification. Here, we present an electrochemical strategy to remove PFAS from ultra-short to long-chain PFAS within a single process. A redox-polymer electrodialysis (redox-polymer ED) system leverages a water-soluble redox polymer with inexpensive nanofiltration membranes, facilitating the treatment of varied chain lengths of PFAS without membrane fouling. Our approach combines both ion migration by electrodialysis (for PFAS with chain lengths ≤C4) and electrosorption strategies (for PFAS with chain lengths ≥C6) to eliminate approximately 90% of ultra-short-, short-chain, and long-chain PFAS. At the same time, we achieve continuous desalination of the source water down to potable water level. The redox-polymer ED exhibits remarkable PFAS removal in real source water scenarios, including from matrices with 10,000 times higher salt concentrations, as well as secondary effluents from wastewaters. Additionally, the removed PFAS is mineralized with a defluorination performance between 76-100% by electrochemical oxidation, highlighting the viability of integrating the separation step with a reactive degradation process.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, USA
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, USA
| | - Ekaterina Shchukina
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, USA
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, USA.
| |
Collapse
|
6
|
Santiago-Cruz HA, Lou Z, Xu J, Sullivan RC, Bowers BB, Molé RA, Zhang W, Li J, Yuan JS, Dai SY, Lowry GV. Carbon Adsorbent Properties Impact Hydrated Electron Activity and Perfluorocarboxylic Acid (PFCA) Destruction. ACS ES&T ENGINEERING 2024; 4:2220-2233. [PMID: 39296420 PMCID: PMC11406532 DOI: 10.1021/acsestengg.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024]
Abstract
Carbon-based adsorbents used to remove recalcitrant water contaminants, including perfluoroalkyl substances (PFAS), are often regenerated using energy-intensive treatments that can form harmful byproducts. We explore mechanisms for sorbent regeneration using hydrated electrons (eaq -) from sulfite ultraviolet photolysis (UV/sulfite) in water. We studied the UV/sulfite treatment on three carbon-based sorbents with varying material properties: granular activated carbon (GAC), carbon nanotubes (CNTs), and polyethylenimine-modified lignin (lignin). Reaction rates and defluorination of dissolved and adsorbed model perfluorocarboxylic acids (PFCAs), perfluorooctanoic acid (PFOA) and perfluorobutanoic acid (PFBA), were measured. Monochloroacetic acid (MCAA) was employed to empirically quantify eaq - formation rates in heterogeneous suspensions. Results show that dissolved PFCAs react rapidly compared to adsorbed ones. Carbon particles in solution decreased aqueous reaction rates by inducing light attenuation, eaq - scavenging, and sulfite consumption. The magnitude of these effects depended on adsorbent properties and surface chemistry. GAC lowered PFOA destruction due to strong adsorption. CNT and lignin suspensions decreased eaq - formation rates by attenuating light. Lignin showed high eaq - quenching, likely due to its oxygenated functional groups. These results indicate that desorbing PFAS and separating the adsorbent before initiating PFAS degradation reactions will be the best engineering approach for adsorbent regeneration using UV/sulfite.
Collapse
Affiliation(s)
- Hosea A Santiago-Cruz
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zimo Lou
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiang Xu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ryan C Sullivan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
| | - Bailey B Bowers
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Rachel A Molé
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, United States
| | - Jinghao Li
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, United States
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Susie Y Dai
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Candeago R, Wang H, Nguyen MT, Doucet M, Glezakou VA, Browning JF, Su X. Unraveling the Role of Solvation and Ion Valency on Redox-Mediated Electrosorption through In Situ Neutron Reflectometry and Ab Initio Molecular Dynamics. JACS AU 2024; 4:919-929. [PMID: 38559709 PMCID: PMC10976571 DOI: 10.1021/jacsau.3c00705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
Solvation and ion valency effects on selectivity of metal oxyanions at redox-polymer interfaces are explored through in situ spatial-temporally resolved neutron reflectometry combined with large scale ab initio molecular dynamics. The selectivity of ReO4- vs MoO42- for two redox-metallopolymers, poly(vinyl ferrocene) (PVFc) and poly(3-ferrocenylpropyl methacrylamide) (PFPMAm) is evaluated. PVFc has a higher Re/Mo separation factor compared to PFPMAm at 0.6 V vs Ag/AgCl. In situ techniques show that both PVFc and PFPMAm swell in the presence of ReO4- (having higher solvation with PFPMAm), but do not swell in contact with MoO42-. Ab initio molecular simulations suggest that MoO42- maintains a well-defined double solvation shell compared to ReO4-. The more loosely solvated anion (ReO4-) is preferably adsorbed by the more hydrophobic redox polymer (PVFc), and electrostatic cross-linking driven by divalent anionic interactions could impair film swelling. Thus, the in-depth understanding of selectivity mechanisms can accelerate the design of ion-selective redox-mediated separation systems for transition metal recovery and recycling.
Collapse
Affiliation(s)
- Riccardo Candeago
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Hanyu Wang
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Manh-Thuong Nguyen
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mathieu Doucet
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - James F. Browning
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Kim N, Oh W, Knust KN, Zazyki Galetto F, Su X. Molecularly Selective Polymer Interfaces for Electrochemical Separations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16685-16700. [PMID: 37955994 DOI: 10.1021/acs.langmuir.3c02389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The molecular design of polymer interfaces has been key for advancing electrochemical separation processes. Precise control of molecular interactions at electrochemical interfaces has enabled the removal or recovery of charged species with enhanced selectivity, capacity, and stability. In this Perspective, we provide an overview of recent developments in polymer interfaces applied to liquid-phase electrochemical separations, with a focus on their role as electrosorbents as well as membranes in electrodialysis systems. In particular, we delve into both the single-site and macromolecular design of redox polymers and their use in heterogeneous electrochemical separation platforms. We highlight the significance of incorporating both redox-active and non-redox-active moieties to tune binding toward ever more challenging separations, including structurally similar species and even isomers. Furthermore, we discuss recent advances in the development of selective ion-exchange membranes for electrodialysis and the critical need to control the physicochemical properties of the polymer. Finally, we share perspectives on the challenges and opportunities in electrochemical separations, ranging from the need for a comprehensive understanding of binding mechanisms to the continued innovation of electrochemical architectures for polymer electrodes.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wangsuk Oh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle N Knust
- Department of Chemistry, Millikin University, 1184 W. Main Street, Decatur, Illinois 62522, United States
| | - Fábio Zazyki Galetto
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianopolis SC 88040-900, Brazil
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Feuerstein A, Boßmann B, Rittner T, Leiner R, Janka O, Gallei M, Schäfer A. Polycobaltoceniumylmethylene - A Water-Soluble Polyelectrolyte Prepared by Ring-Opening Transmetalation Polymerization. ACS Macro Lett 2023; 12:1019-1024. [PMID: 37428818 DOI: 10.1021/acsmacrolett.3c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The synthesis of a water-soluble polycobaltoceniumylmethylene chloride (PCM-Cl) via ring-opening transmetalation polymerization is presented. Starting from a carba[1]magnesocenophane and cobalt(II) chloride, this route gives access to a polymer with methylene-bridged cobaltocenium moieties within the polymers' main-chain. The polymer was characterized by NMR spectroscopy, elemental analysis, TGA, DSC, XRD, and CV measurements, as well as UV-vis spectroscopy. Furthermore, GPC measurements in an aqueous eluent versus pullulan standards were conducted to gain insight into the obtained molar masses and distributions. In addition, the ion-dependent solubility was demonstrated by anion exchange, tuning the hydrophobic/hydrophilic properties of this redox-responsive material.
Collapse
Affiliation(s)
- Aylin Feuerstein
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Blandine Boßmann
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Till Rittner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Regina Leiner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Oliver Janka
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - André Schäfer
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| |
Collapse
|