1
|
Sun C, Xie F, Zhang H, Feng L, Wang Y, Huang C, Cui Z, Luo C, Zhang L, Wang Q. Paclitaxel/Luteolin Coloaded Dual-Functional Liposomes for Esophageal Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411930. [PMID: 40265971 DOI: 10.1002/advs.202411930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/01/2025] [Indexed: 04/24/2025]
Abstract
Combination therapy integrating chemotherapeutic agents with natural bioactive ingredients represents an attractive strategy for esophageal squamous cell carcinoma (ESCC) treatment, yet achieving tumor-specific co-delivery remains a critical challenge. Herein, we report that the combination of luteolin (LUT) and paclitaxel (PTX) exerts a remarkable synergy in ESCC treatment, while concurrently alleviating PTX-induced hepatotoxicity; EA2 aptamer has been identified for its exceptional specificity and strong affinity toward Catenin Alpha 1 protein (CTNNA1) in ESCC cells. Leveraging this specificity, nanosized EA2-modified pH-sensitive liposomes (EA2-PSL-PTX/LUT) are successfully developed with effective co-loading, controlled release, and good biostability. EA2-PSL-PTX/LUT exhibits stimuli-triggered release in the acidic tumor microenvironment and facilitates specific cellular uptake and endosomal escape in ESCC cells. In vivo imaging confirms precise tumor localization, deep tumor penetration, and prolonged retention of the nanocarrier. In vitro and in vivo findings validate that the nanocarrier potentiates synergistic inhibitions of PTX and LUT. Notably, EA2-PSL-PTX/LUT significantly activates the tumor microenvironment by promoting dendritic cell maturation and T cell infiltration. And the immunosuppressive microenvironment has been remodeled by decreasing myeloid-derived suppressor cells and regulatory T cell accumulation. This study provides a strategy for precise delivery of combinational chemotherapeutic drugs for ESCC targeted therapy.
Collapse
Affiliation(s)
- Congyong Sun
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Fei Xie
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Huiyun Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, China
| | - Lulu Feng
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Yuting Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Chaofan Huang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Zhizhen Cui
- Department of Acute Infectious Disease Control and Prevention, Huai'an Center for Disease Control and Prevention, Huai'an, Jiangsu, 223003, China
| | - Chao Luo
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Li Zhang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Qilong Wang
- The Comprehensive Cancer Center, Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| |
Collapse
|
2
|
Wang H, Liao J, Wang W, Zhang J. A crucial role of miR-155 in the pathomechanism of acute kidney injury. Front Pharmacol 2025; 16:1570000. [PMID: 40308762 PMCID: PMC12040948 DOI: 10.3389/fphar.2025.1570000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Acute kidney injury (AKI) is one of the nonnegligible causes of mortality worldwide. It is important to understand the underlying molecular mechanism of AKI to effective therapeutic targets. miR-155 has been found to play a pivotal role in the development of AKI, while a comprehensive review on this topic is currently still lacking. Based on this review, we found that miR-155and is strongly correlated with the pathophysiological development of AKI by modulating cell apoptosis, inflammation, and proliferation. Mechanistically, miR-155 exerts a promoting function in multiple types of AKI by regulating multiple proteins or signaling pathways, such as SOCS-1, ERRFI1, SOCS-1, TRF1, CDK12, and TCF4/Wnt/β-catenin pathway. The inhibition of miR-155 has a renoprotective effect in drug- or substance-induced AKI. Therefore, drugs or biological compounds targeted by miR-155 and its pathways may recover the process of AKI by altering apoptosis, inflammation, and pyroptosis. A miRNA nanocarrier system that has already been developed could offer a novel approach to treat AKI, providing a direction for future research. Further large-scale studies are necessary to elucidate the clinical significance of miR-155 as a potential therapeutic target for multiple types of AKI.
Collapse
Affiliation(s)
- Hui Wang
- Department of Urology, The First People’s Hospital of Linhai, Linhai, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Wei Wang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People’s Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Jianhua Zhang
- Department of Urology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People’s Hospital), Hangzhou Medical College, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
4
|
Jiang Y, Cao Y, Yao Y, Zhang D, Wang Y. Chitosan and hyaluronic acid in breast cancer treatment: Anticancer efficacy and nanoparticle and hydrogel development. Int J Biol Macromol 2025; 301:140144. [PMID: 39848359 DOI: 10.1016/j.ijbiomac.2025.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The pervasive global health concern of breast cancer necessitates the development of innovative therapeutic interventions to enhance efficacy and mitigate adverse effects. Chitosan and hyaluronic acid, recognized for their biocompatibility and biodegradability, present compelling options for the novel drug delivery systems and therapeutic platforms in the context of breast cancer management. This review will delineate the distinctive attributes of chitosan and hyaluronic acid, encompassing their inherent anticancer properties, targeting capabilities, and suitability for chemical modifications along with nanoparticle development. These characteristics render them exceptionally well-suited for the fabrication of nanoparticles and hydrogels. The intrinsic anticancer potential of chitosan, in conjunction with its mucoadhesive properties, and the robust binding affinity of hyaluronic acid to CD44 receptors, facilitate specific drug delivery to the malignant cells, thus circumventing the limitations inherent in traditional treatment modalities such as chemotherapy. The incorporation of these materials into nanocarriers allows for the co-delivery of therapeutic agents, thereby potentiating synergistic effects, while hydrogel systems provide localized, controlled drug release and facilitate tissue regeneration. An analysis of advancements in their synthesis, functionalization, and application is presented, while also acknowledging challenges pertaining to scalability and clinical translation.
Collapse
Affiliation(s)
- Yanlin Jiang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiqun Yao
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China.
| | - Yuying Wang
- Department of Breast Surgery, The Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, China.
| |
Collapse
|
5
|
Wang Y, Sun X, Ren M, Ma F, Zhao R, Zhu X, Xu Y, Cao N, Chen Y, Pan Y, Zhao A. Integrative network pharmacology, transcriptomics, and proteomics reveal the material basis and mechanism of the Shen Qing Weichang Formula against gastric cancer. Chin Med 2025; 20:42. [PMID: 40155922 PMCID: PMC11954191 DOI: 10.1186/s13020-025-01091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy with poor prognosis and lack of efficient therapeutic methods. Shen Qing Weichang Formula (SQWCF) is a patented traditional herbal prescription for GC, but its efficacy and underlying mechanism remains to be clarified. PURPOSE To explore the efficacy and potential mechanism of SQWCF in treating GC. METHODS A subcutaneous transplantation tumor model of human GC was established for assessing SQWCF's efficacy and safety. A comprehensive strategy integrating mass spectrometry, network pharmacology, omics analysis, and bioinformatic methods was adopted to explore the core components, key targets, and potential mechanism of SQWCF in treating GC. Molecular docking, immunohistochemistry, quantitative real-time PCR, and western blot were applied to validation. RESULTS In the mouse model of GC, SQWCF effectively suppressed the GC growth without evident toxicity and enhanced the therapeutic efficacy of paclitaxel. Network pharmacology and molecular docking based on mass spectrometry showed that key targets (CASP3, TP53, Bcl-2, and AKT1) and core active components (Calycosin, Glycitein, Liquiritigenin, Hesperetin, and Eriodictyol) involved in the anti-GC effect of SQWCF had stable binding affinity, of which AKT1 ranked the top in the affinity. Validation based on network pharmacology and omics analysis confirmed that PI3K-AKT and MAPK signaling pathways, as well as downstream apoptosis pathway, explained the therapeutic effects of SQWCF on GC. In addition, family with sequence similarity 81 member A (FAM81A) was identified as a novel biomarker of GC that was aberrantly highly expressed in GC and associated with poor prognosis by bioinformatic analysis, and was an effector target of SQWCF at both mRNA and protein levels. CONCLUSION This study uncovers a synergistic multi-component, multi-target, and multi-pathway regulatory mechanism of SQWCF in treating GC comprehensively, emphasizing its potential for therapeutic use and providing new insights into GC treatment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Xiaoyu Sun
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Mingming Ren
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yuanyuan Chen
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yongfu Pan
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China.
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China.
| |
Collapse
|
6
|
Su D, Lai X, Lin Z, Xu Y, Fu Z, Chen J, Wu X. Innovative nanodelivery systems for targeted breast cancer therapy: overcoming drug delivery challenges and exploring future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04039-5. [PMID: 40095056 DOI: 10.1007/s00210-025-04039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Cancer chemotherapy is often limited by insufficient drug targeting, which can cause severe adverse effects on healthy tissues. The advent of nanodelivery systems offers a potential solution to this issue. It intricately enhances drug accumulation in tumor regions, while optimizing drug solubility, ensuring colloidal stability, and promoting cellular uptake, significantly improving the precision and efficacy of treatment, opening a gentler yet more effective new path for cancer therapy. This article begins with the pathogenesis of breast cancer and extends to the current treatment methods and their shortcomings, exploring in-depth the targeting therapeutic effects of five innovative nanodelivery technologies used in the treatment of breast cancer in recent years. Finally, it discusses the potential opportunities and challenges that nanodelivery systems may face in future development.
Collapse
Affiliation(s)
- Dandan Su
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Xiaolin Lai
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Youfa Xu
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhiqin Fu
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
7
|
Han M, Zhou X, Cheng H, Qiu M, Qiao M, Geng X. Chitosan and hyaluronic acid in colorectal cancer therapy: A review on EMT regulation, metastasis, and overcoming drug resistance. Int J Biol Macromol 2025; 289:138800. [PMID: 39694373 DOI: 10.1016/j.ijbiomac.2024.138800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Up to 90% of cancer-related fatalities could be attributed to metastasis. Therefore, understanding the mechanisms that facilitate tumor cell metastasis is beneficial for improving patient survival and results. EMT is considered the main process involved in the invasion and spread of CRC. Essential molecular components like Wnt, TGF-β, and PI3K/Akt play a role in controlling EMT in CRC, frequently triggered by various factors such as Snail, Twist, and ZEB1. These factors affect not only the spread of CRC but also determine the reaction to chemotherapy. The influence of non-coding RNAs, especially miRNAs and lncRNAs, on the regulation of EMT is clear in CRC. Exosomes, involved in cell-to-cell communication, can affect the TME and metastasis of CRC. Pharmacological substances and nanoparticles demonstrate promise as efficient modulators of EMT in CRC. Chitosan and HA are two major carbohydrate polymers with considerable potential in inhibiting CRC. Chitosan and HA can be employed to modify nanoparticles to enhance cargo transport for reducing CRC. Additionally, chitosan and HA-modified nanocarriers, which can be utilized as potential approaches in suppressing EMT and reversing drug resistance in CRC, can inhibit EMT and chemoresistance, crucial components in tumorigenesis.
Collapse
Affiliation(s)
- Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Hang Cheng
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Mengru Qiu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Meng Qiao
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Xiao Geng
- Department of Party Committee Office, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| |
Collapse
|
8
|
Umar AK, Limpikirati PK, Rivai B, Ardiansah I, Sriwidodo S, Luckanagul JA. Complexed hyaluronic acid-based nanoparticles in cancer therapy and diagnosis: Research trends by natural language processing. Heliyon 2025; 11:e41246. [PMID: 39811313 PMCID: PMC11729671 DOI: 10.1016/j.heliyon.2024.e41246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Hyaluronic acid (HA) is a popular surface modifier in targeted cancer delivery due to its receptor-binding abilities. However, HA alone faces limitations in lipid solubility, biocompatibility, and cell internalization, making it less effective as a standalone delivery system. This comprehensive study aimed to explore a dynamic landscape of complexation in HA-based nanoparticles in cancer therapy, examining diverse aspects from influential modifiers to emerging trends in cancer diagnostics. We discovered that certain active substances, such as 5-aminolevulinic acid, adamantane, and protamine, have been on trend in terms of their usage over the past decade. Dextran, streptavidin, and catechol emerge as intriguing conjugates for HA, coupled with nanostar, quantum dots, and nanoprobe structures for optimal drug delivery and diagnostics. Strategies like hypoxic conditioning, dual responsiveness, and pulse laser activation enhance controlled release, targeted delivery, and real-time diagnostic techniques like ultrasound imaging and X-ray computed tomography (X-ray CT). Based on our findings, conventional bibliometric tools fail to highlight relevant topics in this area, instead producing merely abstract and broad-meaning keywords. Extraction using Named Entity Recognition and topic search with Latent Dirichlet Allocation successfully revealed five representative topics with the ability to exclude irrelevant keywords. A shift in research focuses from optimizing chemical toxicity to particular targeting tactics and precise release mechanisms is evident. These findings reflect the dynamic landscape of HA-based nanoparticle research in cancer therapy, emphasizing advancements in targeted drug delivery, therapeutic efficacy, and multimodal diagnostic approaches to improve overall patient outcomes.
Collapse
Affiliation(s)
- Abd Kakhar Umar
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Patanachai K. Limpikirati
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bachtiar Rivai
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Ilham Ardiansah
- Department of Animal Husbandry, Faculty Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Medical Informatics Laboratory, ETFLIN, Palu City, 94225, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Jittima Amie Luckanagul
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
9
|
Zhang H, Liu H, Xie Z, Du J, Jin C. Hyaluronic acid-functionalized supramolecular nanophotosensitizers for targeted photoimmunotherapy of triple-negative breast cancer. J Nanobiotechnology 2024; 22:777. [PMID: 39702323 DOI: 10.1186/s12951-024-03044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is recognized as a particularly aggressive subtype of breast cancer that is devoid of effective therapeutic targets. Immune checkpoint inhibitors (ICIs) have demonstrated promising results in TNBC treatment. Nonetheless, most patients either develop resistance to ICIs or fail to respond to them initially. Owing to its spatio-temporal precision and non-invasive nature, photoimmunotherapy offers a targeted therapeutic strategy for TNBC. Herein, we report hyaluronic acid (HA)-functionalized indocyanine green-based supramolecular nanoparticles (HGI NPs), with biodegradable characteristics, for high-performance photoacoustic imaging and targeted phototherapy for TNBC. Notably, HGI NPs can significantly gather in TNBC tissues because of the enhanced permeability and retention effect of the tumor, and the tumor-targeting properties of HA. The strong amplification of HGI nanoparticles triggers a significant immunogenic cell death (ICD) response when exposed to 808 nm light, thus shifting the immunosuppressive tumor microenvironment (iTME) into a tumor attack mode and 'hot' state. Antitumor experiments demonstrate the high efficiency of the supramolecular photosensitizers HGI NPs for TNBC elimination and good biosafety. This synergistic strategy reshapes the iTME and amplifies the antitumor immune response, providing a theoretical foundation for combining phototherapy and ICIs as potential treatments for TNBC.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongxin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianshi Du
- Key Laboratory and Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Chunxiang Jin
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024; 34:671-696. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
11
|
Song B, Hao M, Zhang S, Niu W, Li Y, Chen Q, Li S, Tong C. Comprehensive review of Hesperetin: Advancements in pharmacokinetics, pharmacological effects, and novel formulations. Fitoterapia 2024; 179:106206. [PMID: 39255908 DOI: 10.1016/j.fitote.2024.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Hesperetin is a flavonoid compound naturally occurring in the peel of Citrus fruits from the Rutaceae family. Previous studies have demonstrated that hesperetin exhibits various pharmacological effects, such as anti-inflammatory, anti-tumor, antioxidative, anti-aging, and neuroprotective properties. In recent years, with the increasing prevalence of diseases and the rising awareness of traditional Chinese medicine, hesperetin has garnered growing attention for its wide-ranging pharmacological effects. To substantiate its health benefits and elucidate potential mechanisms, knowledge of pharmacokinetics is crucial. However, the limited solubility of hesperetin restricts its bioavailability, thereby diminishing its efficacy as a beneficial health agent. To enhance the bioavailability of hesperetin, various novel formulations have been developed, including nanoparticles, liposomes, and cyclodextrin inclusion complexes. This article reviews recent advances in the pharmacokinetics of hesperetin and methods to improve its bioavailability, as well as its pharmacological effects and mechanisms, aiming to provide a theoretical basis for clinical applications.
Collapse
Affiliation(s)
- Bocui Song
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China.
| | - Meihan Hao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Administration Committee of Jilin Yongji Economic Development Zone, Jilin, Jilin, China
| | - Wenqi Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuqi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qian Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| |
Collapse
|
12
|
Guo Y, Wang H, Wang X, Chen K, Feng L. Enhancing radiotherapy in triple-negative breast cancer with hesperetin-induced ferroptosis via AURKA targeting nanocomposites. J Nanobiotechnology 2024; 22:744. [PMID: 39614277 DOI: 10.1186/s12951-024-02987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer type that lacks targeted treatment options. Ferroptosis, a novel therapeutic strategy, induces cell death by disrupting the oxidative-reductive balance. Hesperetin, a potential TNBC therapeutic drug, has unidentified regulatory targets. The objective of this study was to explore the potential targets of hesperetin in TNBC and investigate whether the nanocomposites carrier hesperetin-loaded ferroptosis-inducing nanocomposites (HFPN), which activates ferroptosis, can enhance the anti-tumor efficacy of hesperetin. Bioinformatics methods were employed to screen hesperetin targets in TNBC, and a molecular docking model between hesperetin and the core target aurora kinase A (AURKA) was successfully constructed. The stability and anti-tumor activity of HFPN were validated in cell and mouse models, including tumor suppression and increased radiation sensitivity. These results suggest that HFPN can regulate the core target AURKA in TNBC, disrupt tumor oxidative-reductive balance, promote ferroptosis in tumor cells, and ultimately enhance the effectiveness of radiation therapy for TNBC.
Collapse
Affiliation(s)
- Yang Guo
- Department of Breast Surgery, The First Hospital of China Medical University, No.155 Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Huan Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Xinlei Wang
- Department of Interventional Therapy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Keyan Chen
- Laboratory Animal Science of China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.
| | - Liang Feng
- Department of Breast Surgery, The First Hospital of China Medical University, No.155 Nanjingbei Street, Heping District, Shenyang, Liaoning Province, 110001, China.
| |
Collapse
|
13
|
Giri D, Dey SK, Manna S, Das Chaudhuri A, Mahata R, Pradhan A, Roy T, Jana K, Das S, Roy S, Maiti Choudhury S. Nanoconjugate Carrying pH-Responsive Transferrin Receptor-Targeted Hesperetin Triggers Triple-Negative Breast Cancer Cell Death through Oxidative Attack and Assemblage of Pro-Apoptotic Proteins. ACS APPLIED BIO MATERIALS 2024; 7:7556-7573. [PMID: 39504304 DOI: 10.1021/acsabm.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Triple-negative breast cancer (TNBC) is recognized as a major aggressive subtype of breast cancer due to its expeditious worsening growth, extensive metastatic capability, and recalcitrance to standard current treatments. Hesperetin (HSP), a natural bioflavonoid from citrus fruits, demonstrates pronounced anticancer efficacy, but its hydrophobicity limits its clinical development. The present study reports the fabrication of a biocompatible and pH-responsive transferrin (TF) receptor-targeted HSP-loaded poly(lactic-co-glycolic acid) (PLGA) nanobioconjugate (PLGA-HSP-TF NPs) and the exploration of its in vitro and in vivo antineoplastic potential. PLGA nanoparticles (NPs), PLGA-HSP NPs, and PLGA-HSP-TF NPs were synthesized and characterized by DLS, FTIR, FE-SEM, and 1H NMR spectroscopy. The stability and in vitro release profile of nanoparticles were inspected, and anticancer efficacy was scrutinized in terms of in vitro cytotoxicity, oxidative stress and apoptosis biomarkers, and cell cycle arrest. In vivo tumor regression and host survival studies were executed in Ehrlich ascites carcinoma (EAC) cell-bearing Swiss albino mice. The drug uptake of highly stable PLGA-HSP-TF NPs was accomplished effectively in MDA-MB-231 cells and showed the pH-dependent intracellular release of HSP, which generated excessive intracellular reactive oxygen species (ROS) that led to oxidative assault to the TNBC cells. This elevated ROS dropped the mitochondrial membrane potential and triggered apoptosis-mediated cell death by arresting the cell cycle at the G0/G1 phase. Furthermore, PLGA-HSP-TF NPs unveiled significant in vivo Ehrlich ascites carcinoma regression and host survival compared to free HSP with minimum toxicity at a minimum dose of 20 mg/kg body weight. The study divulges that PLGA-HSP-TF NPs may be an astounding anticancer nanocandidate for aggressive triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Dibyendu Giri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
- Department of Physiology, Ghatal Rabindra Satabarsiki Mahavidyalaya, Ghatal, Paschim Medinipur, West Bengal, India, 721212
| | - Surya Kanta Dey
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sounik Manna
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Angsuman Das Chaudhuri
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Rumi Mahata
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Ananya Pradhan
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Tamanna Roy
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P1/12 CIT scheme VIIM, Kolkata, West Bengal, India, 700054
| | - Subhasis Das
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Sumita Roy
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| | - Sujata Maiti Choudhury
- Biochemistry, Molecular Endocrinology and Reproductive Physiology Laboratory, Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India, 721102
| |
Collapse
|
14
|
Son NN, Thanh VM, Huong NT. Synthesis of F127-GA@ZnO nanogel as a cisplatin drug delivery pH-sensitive system. RSC Adv 2024; 14:35005-35020. [PMID: 39497764 PMCID: PMC11533520 DOI: 10.1039/d4ra06514j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, a novel drug delivery system based on zinc oxide nanoparticles (ZnO NPs) was developed for the enhanced delivery of cisplatin (CPT) to improve cancer treatment. The ZnO NPs were synthesized from guava leaf extract and then surface-functionalized with gallic acid (GA) to improve their biocompatibility and drug loading capacity. Pluronic F127, a biocompatible polymer, was then conjugated to the GA-modified ZnO NPs to further enhance their stability and cellular uptake. The resulting NPs were characterized by various techniques, including FT-IR, UV-Vis, SEM, TEM, 1H NMR, and DLS. The drug loading and release profiles of CPT from the NPs were investigated, showing high CPT loading capacity and pH-dependent release behavior. The in vitro cytotoxicity of the NPs was evaluated against various cancer cell lines, demonstrating enhanced cytotoxicity compared to free CPT. Overall, this study highlights the potential of GA and Pluronic-modified ZnO NPs as a promising drug delivery system for enhanced CPT delivery and improved cancer therapy.
Collapse
Affiliation(s)
- Nguyen Ngoc Son
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Vu Minh Thanh
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| | - Nguyen Thi Huong
- Institute of Chemistry and Materials 17 Hoang Sam, Cau Giay Hanoi Vietnam
| |
Collapse
|
15
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
16
|
Zare I, Zirak Hassan Kiadeh S, Varol A, Ören Varol T, Varol M, Sezen S, Zarepour A, Mostafavi E, Zahed Nasab S, Rahi A, Khosravi A, Zarrabi A. Glycosylated nanoplatforms: From glycosylation strategies to implications and opportunities for cancer theranostics. J Control Release 2024; 371:158-178. [PMID: 38782062 DOI: 10.1016/j.jconrel.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Glycosylated nanoplatforms have emerged as promising tools in the field of cancer theranostics, integrating both therapeutic and diagnostic functionalities. These nanoscale platforms are composed of different materials such as lipids, polymers, carbons, and metals that can be modified with glycosyl moieties to enhance their targeting capabilities towards cancer cells. This review provides an overview of different modification strategies employed to introduce glycosylation onto nanoplatforms, including chemical conjugation, enzymatic methods, and bio-orthogonal reactions. Furthermore, the potential applications of glycosylated nanoplatforms in cancer theranostics are discussed, focusing on their roles in drug delivery, imaging, and combination therapy. The ability of these nanoplatforms to selectively target cancer cells through specific interactions with overexpressed glycan receptors is highlighted, emphasizing their potential for enhancing efficacy and reducing the side effects compared to conventional therapies. In addition, the incorporation of diagnostic components onto the glycosylated nanoplatforms provided the capability of simultaneous imaging and therapy and facilitated the real-time monitoring of treatment response. Finally, challenges and future perspectives in the development and translation of glycosylated nanoplatforms for clinical applications are addressed, including scalability, biocompatibility, and regulatory considerations. Overall, this review underscores the significant progress made in the field of glycosylated nanoplatforms and their potential to revolutionize cancer theranostics.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz 7178795844, Iran
| | - Shahrzad Zirak Hassan Kiadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Tuğba Ören Varol
- Department of Chemistry, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkiye
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Kotekli Campus, Mugla Sitki Kocman University, Mugla TR48000, Turkiye
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkiye; Nanotechnology Research and Application Center, Sabanci University, Tuzla, 34956 Istanbul, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Amid Rahi
- Pathology and Stem cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
17
|
Zhao D, Li Z, Ji DK, Xia Q. Recent Progress of Multifunctional Molecular Probes for Triple-Negative Breast Cancer Theranostics. Pharmaceutics 2024; 16:803. [PMID: 38931924 PMCID: PMC11207493 DOI: 10.3390/pharmaceutics16060803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer (BC) poses a significant threat to women's health, with triple-negative breast cancer (TNBC) representing one of the most challenging and aggressive subtypes due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Traditional TNBC treatments often encounter issues such as low drug efficiency, limited tumor enrichment, and substantial side effects. Therefore, it is crucial to explore novel diagnostic and treatment systems for TNBC. Multifunctional molecular probes (MMPs), which integrate target recognition as well as diagnostic and therapeutic functions, introduce advanced molecular tools for TNBC theranostics. Using an MMP system, molecular drugs can be precisely delivered to the tumor site through a targeted ligand. Real-time dynamic monitoring of drug release achieved using imaging technology allows for the evaluation of drug enrichment at the tumor site. This approach enables accurate drug release, thereby improving the therapeutic effect. Therefore, this review summarizes the recent advancements in MMPs for TNBC theranostics, encompassing the design and synthesis of MMPs as well as their applications in the field of TNBC theranostics.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhe Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (D.Z.); (Z.L.)
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Qian Xia
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
18
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
19
|
Liu R, Hou W, Li J, Gou X, Gao M, Wang H, Zhang Y, Deng H, Yang X, Zhang W. Co-assembly of cisplatin and dasatinib in hyaluronan nanogel to combat triple negative breast cancer with reduced side effects. Int J Biol Macromol 2024; 269:132074. [PMID: 38705320 DOI: 10.1016/j.ijbiomac.2024.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Treatment for triple negative breast cancer (TNBC) remains a huge challenge due to the lack of targeted therapeutics and tumor heterogenicity. Cisplatin (Cis) have demonstrated favorable therapeutic response in TNBC and thus is used together with various kinase inhibitors to fight the heterogenicity of TNBC. The combination of Cis with SRC inhibitor dasatinib (DAS) has shown encouraging anti-TNBC efficacy although the additive toxicity was commonly observed. To overcome the severe side effects of this Cis involved therapy, here we co-encapsulated Cis and DAS into a self-assembled hyaluronan (HA) nanogel (designated as HA/Cis/DAS (HCD) nanogel) to afford the TNBC targeted delivery by using the 4T1 mouse model. The acquired HCD nanogel was around 181 nm in aqueous solution, demonstrating the pharmacological activities of both Cis and DAS. Taking advantages of HA's targeting capability towards CD44 that is overexpressed on many TNBC cells, the HCD could well maintain the anticancer efficacy of the Cis and DAS combination, significantly increase the maximum tolerated dose and relieve the renal toxicity in vivo. The current HCD nanogel provides a potent strategy to improve the therapeutic outcome of Cis and DAS combination and thus representing a new targeted treatment option for TNBC.
Collapse
Affiliation(s)
- Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayi Li
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xiaorong Gou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Menghan Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xue Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
20
|
Yang CW, Liu K, Yao CY, Li B, Juhong A, Ullah AKMA, Bumpers H, Qiu Z, Huang X. Active Targeting Hyaluronan Conjugated Nanoprobe for Magnetic Particle Imaging and Near-Infrared Fluorescence Imaging of Breast Cancer and Lung Metastasis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27055-27064. [PMID: 38757711 PMCID: PMC11145589 DOI: 10.1021/acsami.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
A major contributing cause to breast cancer related death is metastasis. Moreover, breast cancer metastasis often shows little symptoms until a large area of the organs is occupied by metastatic cancer cells. Breast cancer multimodal imaging is attractive since it integrates advantages from several modalities, enabling more accurate cancer detection. Glycoprotein CD44 is overexpressed on most breast cancer cells and is the primary cell surface receptor for hyaluronan (HA). To facilitate breast cancer diagnosis, we report an indocyanine green (ICG) and HA conjugated iron oxide nanoparticle (NP-ICG-HA), which enabled active targeting to breast cancer by HA-CD44 interaction and detected metastasis with magnetic particle imaging (MPI) and near-infrared fluorescence imaging (NIR-FI). When evaluated in a transgenic breast cancer mouse model, NP-ICG-HA enabled the detection of multiple breast tumors in MPI and NIR-FI, providing more comprehensive images and a diagnosis of breast cancer. Furthermore, NP-ICG-HAs were evaluated in a lung metastasis model. Upon NP-ICG-HA administration, MPI showed clear signals in the lungs, indicating the tumor sites. This is the first time that HA-based NPs have enabled MPI of cancer. NP-ICG-HAs are an attractive platform for noninvasive detection of primary breast cancer and lung metastasis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kunli Liu
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cheng-You Yao
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Bo Li
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Aniwat Juhong
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - A. K. M. Atique Ullah
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Harvey Bumpers
- Department
of Surgery, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhen Qiu
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Institute
for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biomedical Engineering, Michigan State
University, East Lansing, Michigan 48824, United States
| |
Collapse
|
21
|
Bhagat S, Singh S. Use of antioxidant nanoliposomes for co-delivery of PTEN plasmids and plumbagin to induce apoptosis in hepatic cancer cells. Biomed Mater 2024; 19:025026. [PMID: 38215478 DOI: 10.1088/1748-605x/ad1dff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Hepatocellular carcinoma remains a challenging contributor to the global cancer and related mortality, and claims approximately 800,000 deaths each year. Dysregulation or loss of function mutations involving the tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome ten (PTEN), has been well-characterized in various cancers to elicit anomalous cell proliferation and oncogenic transformation. However, the delivery and bioavailability of genes/drugs of interest to carcinomas remains a serious bottleneck behind the success of any anti-cancer formulation. In this study, we have engineered nanoliposomes containing PTEN plasmids, plumbagin, and antioxidant cerium oxide nanoparticles (Lipo-PTEN-Plum) to restore the PTEN expression and inhibit the AKT/PI3K pathway. The Lipo-PTEN-Plum was quasi-spherical in shape with ∼110 nm diameter and ∼64% plumbagin loading efficiency. The Lipo-PTEN-Plum was successfully internalized HepG2 cells, restore PTEN expression and inhibit PI3K/AKT pathway to induce death in cells grown in monolayer and in form of spheroids. Mechanistically, the formulation showed G2/M cell cycle arrest, DNA damage and apoptosis in hepatic cancer cells. Other cellular events such as Caspase-7 overexpression and PI3K (phosphoinositide 3-kinase), AKT (a serine/threonine protein kinase), PARP [Poly (ADP-ribose) polymerases], and mTOR (Mammalian target of rapamycin) inhibition led to the apoptosis in hepatic cancer cells. The mRNA expression profile of PTEN, PI3K, AKT3, Caspase-7, PARP and mTOR proteins, primarily controlling the cancer cell proliferation and apoptosis, suggest that exogenous supply of PTEN could regulate the expression of oncogenic proteins and thus cancer progression.
Collapse
Affiliation(s)
- Stuti Bhagat
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India
- DBT- Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
- Department of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- DBT-National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India
- DBT- Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
- Department of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
22
|
Qiu H, Wang J, Zhi Y, Yan B, Huang Y, Li J, Shen C, Dai L, Fang Q, Shi C, Li W. Hyaluronic Acid-Conjugated Fluorescent Probe-Shielded Polydopamine Nanomedicines for Targeted Imaging and Chemotherapy of Bladder Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46668-46680. [PMID: 37769147 DOI: 10.1021/acsami.3c09564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Bladder cancer is one of the most common malignancies in the urinary system, with high risk of recurrence and progression. However, the difficulty in detecting small tumor lesions and the lack of selectivity of intravesical treatment seriously affect the prognosis of patients with bladder cancer. In the present work, a nanoparticle-based delivery system with tumor targeting, high biocompatibility, simple preparation, and the ability to synergize imaging and therapy was fabricated. Specifically, this nanosystem consisted of the core of doxorubicin (DOX)-loaded polydopamine nanoparticles (PDD NPs) and the shell of hyaluronic acid (HA)-conjugated IR780 (HA-IR780). The HA-IR780-covered PDD NPs (HR-PDD NPs) demonstrated tumor targeting and visualization both in vitro and in vivo with properties of promoted cancer cell endocytosis and lysosomal escape, efficiently delivering drugs to the target site and exerting a killing effect on tumor cells. Encouragingly, intravesical instillation of HR-PDD NPs improved drug retention in the bladder and promoted its accumulation in tumor tissue, resulting in better tumor proliferation inhibition and apoptosis in an orthotopic bladder cancer model in rats. This study provides a promising strategy for the diagnosis and therapy of bladder cancer.
Collapse
Affiliation(s)
- Heping Qiu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jianwu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Benhuang Yan
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yuandi Huang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jinjin Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chongxing Shen
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Linyong Dai
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weibing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|