1
|
Fransson J, Naaman R. Chirality Assisted Triplet Electron Pairing. J Phys Chem Lett 2025; 16:1629-1633. [PMID: 39907703 PMCID: PMC11831671 DOI: 10.1021/acs.jpclett.4c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Redox processes that involve pairs of electrons are common in nature. Some of these reactions involve oxygen molecules. The understanding of the efficiency of the oxygen reduction reaction (ORR), for example, is a challenge since the reaction is spin forbidden and requires the transfer of two pairs of electrons. Past experimental and theoretical studies demonstrated that by controlling the spin of the transferred electrons, it is possible to overcome the barrier resulting from the spin mismatch between the reactants and the products. In other works, it was suggested that the reaction is enhanced if the two electrons in each pair have phase relation, namely, they possess the property of a triplet state. Since in nature electrons are transferred through chiral systems, we probed if chirality affects the formation of paired electrons with the same spin, namely, a triplet like state. The model calculations demonstrate that chirality enhances the probability of the formation of electron pairing in the triplet states, even at room temperature. This enhancement originates from breaking the spin degeneracy, enabled by chirality and interaction of the spins with vibrations.
Collapse
Affiliation(s)
- J. Fransson
- Department
of Physics and Astronomy, Uppsala University, Box 516, 752 21 Uppsala, Sweden
| | - R. Naaman
- Department
of Chemical and Biological Physics, Weizmann
Institute, 76100 Rehovot, Israel
| |
Collapse
|
2
|
Østrøm I, Favaro M, Seyfouri M, Burr P, Hoex B. Electrostatic and Electronic Effects on Doped Nickel Oxide Nanofilms for Water Oxidation. J Am Chem Soc 2025; 147:3593-3606. [PMID: 39833686 DOI: 10.1021/jacs.4c14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H2 production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiOx) are highly active and cheaper than precious metal catalysts. However, rigorous catalyst tests and DFT calculations are still needed to rationally optimize NiOx catalysts. In this work, we combine plasma-enhanced atomic layer deposition (PE-ALD) and density functional theory (DFT) to address the role of dopants in promoting NiOx OER activity. Ultrathin films of NiOx doped with Zn2+, Al3+, and Sn4+ presented improved intrinsic activity, stability, and durability for the OER. The results show a low to high catalytic performance of ZnNiOx < NiOx < AlNiOx < SnNiOx, which we attribute to an increase in the concentration of valence band (VB) holes combined with conduction band (CB) electron conductivity, characterized by electrochemical impedance spectroscopy (EIS). The influence of doping on the electronic structure and catalytic activity was investigated using advanced characterization techniques and density functional theory (DFT) calculations (PEB0/pob-TZVP). DFT complements the experimental results, showing that the dopant charge states and orbital hybridization enhance the OER by improving the charge carrier concentration and mobility, thus allowing optimal binding energies and charge dynamics and delocalization. Our findings demonstrate the potential of PE-ALD-doped nanofilms NiOx and DFT to rationally design and develop catalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Ina Østrøm
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia
| | - Marco Favaro
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | | | - Patrick Burr
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW 2052, Australia
| | - Bram Hoex
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia
| |
Collapse
|
3
|
Zhao W, Yang J, Xu F, Weng B. Recent Advancements on Spin Engineering Strategies for Highly Efficient Electrocatalytic Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401057. [PMID: 38587966 DOI: 10.1002/smll.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
4
|
Xu M, Lei L, Hu H, Chen Y, Yang X, Yu K, Cao B, Zhang X, Jiang X, Yao C, Yang H. Construction of Ferric-Oxide-Doped Nickel-Iron Hydroxide Electrocatalysts by Magnetic-Field-Assisted Chemical Corrosion toward Boosted Oxygen Evolution Reaction. Molecules 2024; 29:3127. [PMID: 38999079 PMCID: PMC11242944 DOI: 10.3390/molecules29133127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Transition-metal-based oxygen evolution reaction (OER) catalysts have attracted widespread attention due to their inexpensive prices, unique layered structures, and rich active sites. Currently, designing low-cost, sustainable, and simple synthesis methods is essential for the application of transition-metal-based catalysts. Here, magnetic field (MF)-assisted chemical corrosion, as a novel technology, is adopted to construct superior OER electrocatalysts. The produced Ni(Fe)(OH)2-Fe2O3 electrode exhibits an overpotential of 272 mV at a current density of 100 mA cm-2, presenting a 64 mV reduction compared to the electrode without an MF. The experimental results indicate that an MF can induce the directional growth of Fe2O3 rods and reduce their accumulation. In addition, an external MF is beneficial for the lattice dislocation of the obtained catalysts, which can increase the surface free energy, thus reducing the activation energy and accelerating the electrochemical reaction kinetics. This work effectively combines a magnetic field with chemical corrosion and electrochemical energy, which offers a novel strategy for the large-scale development of environmentally friendly and superior electrocatalysts.
Collapse
Affiliation(s)
- Mengdie Xu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Ling Lei
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Huilin Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yana Chen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xuchao Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Kaige Yu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Bingying Cao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Chu Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| |
Collapse
|
5
|
Verhage M, van der Minne E, Kiens EM, Korol L, Spiteri RJ, Koster G, Green RJ, Baeumer C, Flipse CFJ. Electronic and Structural Disorder of the Epitaxial La 0.67Sr 0.33MnO 3 Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38619160 PMCID: PMC11056928 DOI: 10.1021/acsami.3c17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Understanding and tuning epitaxial complex oxide films are crucial in controlling the behavior of devices and catalytic processes. Substrate-induced strain, doping, and layer growth are known to influence the electronic and magnetic properties of the bulk of the film. In this study, we demonstrate a clear distinction between the bulk and surface of thin films of La0.67Sr0.33MnO3 in terms of chemical composition, electronic disorder, and surface morphology. We use a combined experimental approach of X-ray-based characterization methods and scanning probe microscopy. Using X-ray diffraction and resonant X-ray reflectivity, we uncover surface nonstoichiometry in the strontium and lanthanum alongside an accumulation of oxygen vacancies. With scanning tunneling microscopy, we observed an electronic phase separation (EPS) on the surface related to this nonstoichiometry. The EPS is likely driving the temperature-dependent resistivity transition and is a cause of proposed mixed-phase ferromagnetic and paramagnetic states near room temperature in these thin films.
Collapse
Affiliation(s)
- Michael Verhage
- Molecular
Materials and Nanosystems (M2N)—Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AP, Netherlands
| | - Emma van der Minne
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
| | - Ellen M. Kiens
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
| | - Lucas Korol
- Department
of Physics & Engineering Physics, University
of Saskatchewan, Saskatoon S7N 5A2, Canada
| | - Raymond J. Spiteri
- Department
of Computer Science, University of Saskatchewan, Saskatoon S7N 5A2, Canada
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
| | - Robert J. Green
- Department
of Physics & Engineering Physics, University
of Saskatchewan, Saskatoon S7N 5A2, Canada
- Stewart
Blusson Quantum Matter Institute, University
of British Columbia, Vancouver V6T 1Z4, Canada
| | - Christoph Baeumer
- MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede 7522 NB, Netherlands
- Peter
Gruenberg
Institute and JARA-FIT, Forschungszentrum
Juelich GmbH, Juelich 52428, Germany
| | - Cornelis F. J. Flipse
- Molecular
Materials and Nanosystems (M2N)—Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5612 AP, Netherlands
| |
Collapse
|