1
|
Deng N, Li Q, Wang W. Design and Fabrication of Nanocellulose-Chitosan Composite Hydrogels with Enhanced Mechanical and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40393931 DOI: 10.1021/acs.langmuir.5c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Due to its outstanding mechanical properties and biocompatibility, nanocellulose (NCC) has gained significant attention as a promising new material in the biomedical field. In this study, a high-performance nanocellulose-chitosan (NCC-CS) composite hydrogel was prepared, incorporating silver nanoparticles (AgNPs) to enhance its antibacterial functionality. The inclusion of NCC substantially improved the physical and functional properties of the hydrogel, as evidenced by a 64.9% increase in tensile strength, an 83.6% enhancement in swelling ratio, and an approximately 91.1-fold reduction in pore size. Meanwhile, the incorporation of NCC particles also played a pivotal role during material modification: they not only provided additional structural support, resulting in superior mechanical performance of the composite hydrogel, but also ensured a more uniform dispersion within the hydrogel matrix, further improving overall stability and processability. Compared with conventional hydrogels, the NCC-CS hydrogel exhibited accelerated degradation rates and remarkable antibacterial activity. These findings highlight the potential of NCC-CS composite hydrogels as multifunctional biomedical materials for applications such as skin injury repair, burn treatment, and chronic wound healing. Moreover, this study offers valuable insights into the structure-property relationships of nanocellulose composite hydrogels, laying a solid foundation for their broader use in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Niuniu Deng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Qiang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wenjie Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|
2
|
Niu X, Yuan M, Zhao R, Wang L, Liu Y, Zhao H, Li H, Yang X, Wang K. Fabrication strategies for chiral self-assembly surface. Mikrochim Acta 2024; 191:202. [PMID: 38492117 DOI: 10.1007/s00604-024-06278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Chiral self-assembly is the spontaneous organization of individual building blocks from chiral (bio)molecules to macroscopic objects into ordered superstructures. Chiral self-assembly is ubiquitous in nature, such as DNA and proteins, which formed the foundation of biological structures. In addition to chiral (bio) molecules, chiral ordered superstructures constructed by self-assembly have also attracted much attention. Chiral self-assembly usually refers to the process of forming chiral aggregates in an ordered arrangement under various non-covalent bonding such as H-bond, π-π interactions, van der Waals forces (dipole-dipole, electrostatic effects, etc.), and hydrophobic interactions. Chiral assembly involves the spontaneous process, which followed the minimum energy rule. It is essentially an intermolecular interaction force. Self-assembled chiral materials based on chiral recognition in electrochemistry, chiral catalysis, optical sensing, chiral separation, etc. have a broad application potential with the research development of chiral materials in recent years.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Luhua Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China
| | - Xing Yang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, People's Republic of China.
| |
Collapse
|
3
|
Zhu Y, Ma L, Hai X, Yang Z, Li X, Chen M, Yuan M, Xiong H, Gao Y, Wang L, Shi F. Adsorption of methyl orange by porous membranes prepared from deep eutectic supramolecular polymer-modified chitosan. ENVIRONMENTAL RESEARCH 2023; 236:116778. [PMID: 37517482 DOI: 10.1016/j.envres.2023.116778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The fabrication of an adsorbent with excellent performance has been a focus of attention because of the toxicity, mutagenicity and carcinogenicity of methyl orange (MO)-containing wastewater discharged from the textile, tannery and pharmaceutical industries. In this study, chitosan (CS) membranes were modified with a deep eutectic supramolecular polymer (DESP), and adsorbent membranes with porous structures were prepared with polyethylene glycol (PEG). Microstructural characterization of the CS-DESP-PEG composite membranes with FT-IR, XRD and SEM showed that the membranes had amorphous crystalline structures and that hydrogen bonding interactions weakened the crystallinity and formed loose porous structures. Optimization of the chitosan to β-cyclodextrin ratio, pH, PEG proportion, MO concentration and adsorbent dose significantly improved the adsorption efficiencies of the membranes. The adsorption behaviours of the membranes were fit with pseudo-second-order adsorption kinetics and the Freundlich adsorption isotherm model. Regeneration experiments showed that the membranes were reusable multiple times and maintained good adsorption capacities.
Collapse
Affiliation(s)
- Yun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Lei Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Xiaoping Hai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Zhi Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Xiaofen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Minghong Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650504, PR China
| | - Huabin Xiong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, PR China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Yuntao Gao
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650504, PR China.
| | - Lina Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| | - Feng Shi
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650504, PR China
| |
Collapse
|