1
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Golja DR, Dinka MO, Kumela AG. Synergistic integration of plasmonic and perovskite nanosurfaces to create a multi-gas sensor for environmental monitoring. RSC Adv 2024; 14:39588-39596. [PMID: 39691221 PMCID: PMC11650705 DOI: 10.1039/d4ra06125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
The escalating levels of air pollution present a critical challenge, posing significant risks to both public health and environmental sustainability. However, recent gas detection methodologies often have inadequate sensitivity and specificity, failing to accurately identify low concentrations of harmful pollutants in real time. Therefore, in this work a (TiO2/ZrO2) N/2/CsAgBr3/(TiO2/ZrO2) N/2-based one dimensional photonic crystal (1D-PC) gas sensor is proposed for detecting key environmental pollutants, specifically ammonia (NH3), methane (CH4), carbon disulfide (CS2), and chloroform (CHCl3). Using the transfer matrix method (TMM) and systematically optimizing critical parameters - including the angle of incidence, dielectric layer composition, thickness of the defect layer, and gas concentration - the computational results reveal a maximum sensitivity of 2170 nm per RIU, figure of merit of 500/RIU, detection accuracy of 0.815, and 0.24 quality factor. These findings underscore the potential of the proposed gas sensor as a robust tool for monitoring environmental concentrations of hazardous compounds.
Collapse
Affiliation(s)
- Desta Regassa Golja
- Department of Civil Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg Johannesburg 2006 South Africa
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| | - Megersa Olumana Dinka
- Department of Civil Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg Johannesburg 2006 South Africa
| | - Alemayehu Getahun Kumela
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| |
Collapse
|
3
|
Cui L, Wang W, Zheng J, Hu C, Zhu Z, Liu B. Wide-humidity, anti-freezing and stretchable multifunctional conductive carboxymethyl cellulose-based hydrogels for flexible wearable strain sensors and arrays. Carbohydr Polym 2024; 342:122406. [PMID: 39048200 DOI: 10.1016/j.carbpol.2024.122406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Hydrogels play an important role in the design and fabrication of wearable sensors with outstanding flexibility, high sensitivity and versatility. Since hydrogels lose and absorb water during changes in humidity and temperature, it is critical and challenging to obtain hydrogels that function properly under different environmental conditions. Herein, a dual network hydrogel based on tannic acid (TA) reinforced polyacrylamide (PAM) and sodium carboxymethylcellulose (CMC) was constructed, while the introduction of the green solvents Solketal and LiCl endowed the hydrogel with greater possibilities for further modification to improve the water content and consistency of the mechanical properties over 30-90 % RH. This composite hydrogel (PTSL) has long-term stability, excellent mechanical strength, and freezing resistance. As strain sensors, they are linear over the entire strain range (R2 = 0.994) and have a high sensitivity (GF = 2.52 over 0-680 % strain range). Furthermore, the hydrogel's exceptional electrical conductivity and freezing resistance are a result of the synergistic effect of Solketal and LiCl, which intensifies the contact between the water molecules and the colloidal phase. This research could address the suitability of hydrogels over a wide range of humidity and temperature, suggesting great applications for smart flexible wearable electronics in harsh environmental conditions.
Collapse
Affiliation(s)
- Liangliang Cui
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jian Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| | - Baojiang Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
4
|
Zhang J, Zheng W, Teng D, Zhang T, Meng Z, Qiu L. Enhanced Fluorescence Based on Slow Light Effect of ZIF-8 Photonic Crystals for Trace 2,4,6-Trinitrophenol Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39631-39641. [PMID: 39022811 DOI: 10.1021/acsami.4c07254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In response to growing concerns about public safety and environmental conservation, it is essential to develop a precise identification method for trace explosives. To improve the stability and detection sensitivity of perovskite quantum dots (PQDs) and address the issue of low porosity in traditional polymer-based photonic crystals (PhCs), this study proposed a PQD photoluminescence (PL) enhancement strategy based on the slow light effect of ZIF-8 PhCs for highly sensitive, selective, and convenient detection of 2,4,6-trinitrophenol (TNP). The slow light effect at the photonic band gap edge is the basis of amplifying the PL signal. PhCs were fabricated by the evaporation-induced self-assembly method. The diffraction wavelength overlapping the whole visible region was designed to match the emission wavelength of PQDs. Results showed that PhCs matching the PBG edge with PQDs' emission peak amplified the PL signal 11.3 times, significantly improving sensitivity for trace TNP detection with a limit as low as 2.52 nM. Moreover, there was a 13.3-fold enhancement of PQDs' fluorescence lifetime when the emission wavelength fell in the PBG range. The hydrophobic surface of ZIF-8 PhCs enhanced the PQDs' stability and moisture resistance. Furthermore, the selective quenching mechanism of TNP by the sensor was photoinduced electron transfer (PET) verified by DFT calculations and time-resolved PL decay dynamics measurements. This study demonstrated great potential for manipulating light emission enhancement by PhCs in developing efficient fluorescent sensors for trace environmental pollutant detection.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenxiang Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Da Teng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Yangtze Delta Region Academy of Bejing Institute of Technology, Jiaxing 314000, China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Wang H, Cheng Y, Zhu J, Zhang L. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation. Chempluschem 2024; 89:e202400002. [PMID: 38527947 DOI: 10.1002/cplu.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Light is a promising renewable energy source and can be converted into heat, electricity, and chemical energy. However, the efficiency of light-energy conversion is largely hindered by limited light-absorption coefficients and the low quantum yield of current-generation materials. Photonic crystals (PCs) can adjust the propagation and distribution of photons because of their unique periodic structures, which offers a compelling platform for photon management. The periodicity of materials with an alternating refractive index can be used to manipulate the dispersion of photons to generate the photonic bandgap (PBG), in which light is reflected. The slow photon effect, i. e., photon propagation at a reduced group velocity near the edges of the PBG, is widely regarded as another valuable optical property for manipulating light. Furthermore, multiple light scattering can increase the optical path, which is a vital optical property for PCs. Recently, the light reflected by PBG, the slow photon effect, and multiple light scattering have been exploited to improve light utilization efficiency in photoelectrochemistry, materials chemistry, and biomedicine to enhance light-energy conversion efficiency. In this review, the fabrication of opal or inverse opal PCs and the theory for improving the light utilization efficiency of photocatalysis, solar cells, and photoluminescence regulation are discussed. We envision photon management of opal or inverse opal PCs may provide a promising avenue for light-assisted applications to improve light-energy-conversion efficiency.
Collapse
Affiliation(s)
- Hui Wang
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yiyan Cheng
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
6
|
Sun Y, Qian X, Gou Y, Zheng C, Zhang F. A Cellulose-Based Dual-Crosslinked Framework with Sensitive Shape and Color Changes in Acid/Alkaline Vapors. Polymers (Basel) 2024; 16:1547. [PMID: 38891492 PMCID: PMC11174363 DOI: 10.3390/polym16111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Cellulose detectors, as green sensors, are some of the defensive mechanisms of plants which combat environmental stresses. However, extracted cellulose struggles to fulfil these functionalities due to its rigid physical/chemical properties. In this study, a novel cellulose dual-crosslinked framework (CDCF) is proposed. This comprises a denser temporary physical crosslinking bond (hydrogen bonding) and a looser covalent crosslinking bond (N,N-methylenebisacrylamide), which create deformable spaces between the two crosslinking sites. Abundant pH-sensitive carboxyl groups and ultralight, highly porous structures make CDCF response very sensitive in acid/alkaline vapor environments. Hence, a significant shrinkage of CDCF was observed following exposure to vapors. Moreover, a curcumin-incorporated CDCF exhibited dual shape and color changes when exposed to acid/alkaline vapors, demonstrating great potential for the multi-detection of acid/alkaline vapors.
Collapse
Affiliation(s)
| | | | | | - Chunling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (Y.S.)
| | - Fang Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China; (Y.S.)
| |
Collapse
|