1
|
Peñaranda JSD, Dhara A, Chalishazar A, Minjauw MM, Dendooven J, Detavernier C. Vapour phase deposition of phosphonate-containing alumina thin films using dimethyl vinylphosphonate as precursor. Dalton Trans 2025; 54:2634-2644. [PMID: 39784308 DOI: 10.1039/d4dt02851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Phosphorous-containing materials are used in a wide array of fields, from energy conversion and storage to heterogeneous catalysis and biomaterials. Among these materials, organic-inorganic metal phosphonate solids and thin films present an interesting option, due to their remarkable thermal and chemical stability. Yet, the synthesis of phosphonate hybrids by vapour phase thin film deposition techniques remains largely unexplored. In this work, we present successful deposition of phosphonate-containing films using dimethyl vinylphosphonate (DMVP) as a phosphonate precursor. Two processes have been studied, being a three-step process comprising alternating exposure to trimethylaluminum (TMA), water (H2O) and DMVP (ABC process), and a four-step process with an extra O3 step following the DMVP pulse (ABCD process). The O3 treatment is employed for in situ functionalisation of the adsorbed phosphonate precursor, transforming the vinyl group into a carboxylic acid end group. For both processes, good precursor saturation was found, with the ABCD process exhibiting a more stable growth per cycle (0.54-0.38 Å per cycle) in the investigated temperature range (100-250 °C). Phosphonate features were visible in FTIR spectra for both films, with the ABCD films also exhibiting a carboxylate signal. XPS showed a higher P incorporation in the ABCD films deposited at 250 °C, although still moderate (P/Al = 0.27), consistent with an alumina structure with phosphonate inclusions. The film stability upon immersion in water was tested, showing a slow oxidation over the course of a week. Finally, annealing experiments in air demonstrated stable films up to 400 °C.
Collapse
Affiliation(s)
- Juan Santo Domingo Peñaranda
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Arpan Dhara
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Aditya Chalishazar
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Matthias M Minjauw
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Jolien Dendooven
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| | - Christophe Detavernier
- Department of Solid State Sciences, CoCooN research group, Ghent University, Krijgslaan 281 (S1), 9000 Gent, Belgium.
| |
Collapse
|
2
|
Xiong Y, Fang Z, Li J, Li Z, Wang G. MXene/Ag-Based Zwitterionic Double-Network Hydrogels with Enhanced Mechanical Strength and Antifouling Performances. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4231-4238. [PMID: 39815471 DOI: 10.1021/acsami.4c19096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Biological fouling seriously jeopardizes the development of the marine industry. Although hydrogels, as a kind of state-of-the-art antifouling material, have received wide attention, their mechanical strength is still relatively weak, and the synergistic antifouling method is comparatively single, thus limiting the performance of hydrogels. Here, a zwitterionic sulfobetaine methacrylate (SBMA)-acrylamide (AM)/sodium alginate (SA) double-network (DN) antifouling hydrogel with superb antifouling ability and outstanding mechanical properties was prepared by grafting MXene/Ag (M/Ag) and the powerful biocide polyhexamethylene biguanide (PHMB). The prepared M/Ag has a great bactericidal effect (99.9%), and the DN-M/Ag-PHMB hydrogel demonstrates high tensile strength (5.8 MPa), remarkable antiprotein adhesion, bactericidal, and antialgal adhesion. This work proves that the DN-M/Ag-PHMB hydrogel has an exceptional antifouling ability in all three stages of biofouling formation and has a promising future as a new type of green marine antifouling material.
Collapse
Affiliation(s)
- Yangkai Xiong
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
- Aircraft Tire High Tech Innovation Center for Complex Working Conditions, Guilin 541000, China
| | - Zhiqiang Fang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jipeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Zheng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Guoqing Wang
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
He W, Li X, Dai X, Shao L, Fu Y, Xu D, Qi W. Redox Concomitant Formation Method for Fabrication of Cu(I)-MOF/Polymer Composites with Antifouling Properties. Angew Chem Int Ed Engl 2024; 63:e202411539. [PMID: 39034298 DOI: 10.1002/anie.202411539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Marine biofouling, which is one of the technical challenges hindering the growth of the marine economy, has been controlled using cuprous oxide (Cu2O) nanoparticles due to the exceptional antifouling properties of Cu(I) ions. However, Cu2O nanoparticles have encountered bottlenecks due to explosive releases of Cu+ ions, high toxicity at elevated doses, and long-term instability. Here, we present a novel method called Redox Concomitant Formation (RCF) for fabricating a hierarchical Cu(I) metal-organic framework polypyrrole (Cu(I)-MOF/PPy) composite. This method enables in situ phase transition via successive redox reactions that change the chemical valence state and coordination mode of Cu(II)-MOF, resulting in a new structure of Cu(I)-MOF while creating a PPy layer surrounded by the hierarchical structure. Owing to the steady release of Cu+ ions from the Cu(I) sites and photothermal properties of PPy, Cu(I)-MOF/PPy exhibits superior and broad-spectrum resistance to marine bacteria, algae, and surface-adhered biofilms in complex biological environments, as well as long-term stability, resulting in 100 % eradication efficiency under solar-driven heating. Mechanistic insights into successive structural redox reactions and formation using the RCF method are provided in detail, enabling the fabrication of novel MOFs with the desired composition and structure for a wide range of potential applications.
Collapse
Affiliation(s)
- Wenxiu He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiangyu Li
- Shenyang National Laboratory for Materials Science, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xueya Dai
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Wei Qi
- Institute of Metal Research, Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| |
Collapse
|
4
|
He Y, Zan J, He Z, Bai X, Shuai C, Pan H. A Photochemically Active Cu 2O Nanoparticle Endows Scaffolds with Good Antibacterial Performance by Efficiently Generating Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:452. [PMID: 38470782 DOI: 10.3390/nano14050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Cuprous oxide (Cu2O) has great potential in photodynamic therapy for implant-associated infections due to its good biocompatibility and photoelectric properties. Nevertheless, the rapid recombination of electrons and holes weakens its photodynamic antibacterial effect. In this work, a new nanosystem (Cu2O@rGO) with excellent photodynamic performance was designed via the in situ growth of Cu2O on reduced graphene oxide (rGO). Specifically, rGO with lower Fermi levels served as an electron trap to capture photoexcited electrons from Cu2O, thereby promoting electron-hole separation. More importantly, the surface of rGO could quickly transfer electrons from Cu2O owing to its excellent conductivity, thus efficiently suppressing the recombination of electron-hole pairs. Subsequently, the Cu2O@rGO nanoparticle was introduced into poly-L-lactic acid (PLLA) powder to prepare PLLA/Cu2O@rGO porous scaffolds through selective laser sintering. Photochemical analysis showed that the photocurrent of Cu2O@rGO increased by about two times after the incorporation of GO nanosheets, thus enhancing the efficiency of photogenerated charge carriers and promoting electron-hole separation. Moreover, the ROS production of the PLLA/Cu2O@rGO scaffold was significantly increased by about two times as compared with that of the PLLA/Cu2O scaffold. The antibacterial results showed that PLLA/Cu2O@rGO possessed antibacterial rates of 83.7% and 81.3% against Escherichia coli and Staphylococcus aureus, respectively. In summary, this work provides an effective strategy for combating implant-related infections.
Collapse
Affiliation(s)
- Yushan He
- Hunan 3D Printing Engineering Research Center of Oral Care, Department of Periodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zihui He
- Hunan 3D Printing Engineering Research Center of Oral Care, Department of Periodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Xinna Bai
- Hunan 3D Printing Engineering Research Center of Oral Care, Department of Conservative Dentistry and Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
- Shenzhen Institute of Information Technology, School of Sino-German Robotics, Shenzhen 518172, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| | - Hao Pan
- Hunan 3D Printing Engineering Research Center of Oral Care, Department of Periodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Wang D, Jin J, Zhang C, Ruan C, qin Y, Li D, Guan M, Lei P. Carbomer Hydrogel Composed of Cu 2O and Hematoporphyrin Monomethyl Ether Promotes the Healing of Infected Wounds. ACS OMEGA 2024; 9:4974-4985. [PMID: 38313474 PMCID: PMC10831829 DOI: 10.1021/acsomega.3c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Infectious wounds pose a significant challenge in the field of wound healing primarily due to persistent inflammation and the emergence of antibiotic-resistant bacteria. To combat these issues, the development of an effective wound dressing that can prevent infection and promote healing is of the utmost importance. Photodynamic therapy (PDT) has emerged as a promising noninvasive treatment strategy for tackling antibiotic-resistant bacteria. A biodegradable photosensitizer called hematoporphyrin monomethyl ether (HMME) has shown potential in generating reactive oxygen species (ROS) upon laser activation to combat bacteria. However, the insolubility of HMME limits its antibacterial efficacy and its ability to facilitate skin healing. To overcome these limitations, we have synthesized a compound hydrogel by combining carbomer, HMME, and Cu2O nanoparticles. This compound hydrogel exhibits enhanced antimicrobial ability and excellent biocompatibility and promotes angiogenesis, which is crucial for the healing of skin defects. By integrating the benefits of HMME, Cu2O nanoparticles, and the gel-forming properties of carbomer, this compound hydrogel shows great potential as an effective wound dressing material. In summary, the compound hydrogel developed in this study offers a promising solution for infectious wounds by addressing the challenges of infection prevention and promoting skin healing. This innovative approach utilizing PDT and the unique properties of the compound hydrogel could significantly improve the outcomes of wound healing in clinical settings.
Collapse
Affiliation(s)
- Dongyu Wang
- Department
of Orthopedic Surgery, Xiangya Hospital
Central South University, Changsha 410008, China
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| | - Jiale Jin
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| | - Chengran Zhang
- Department
of Orthopedic Surgery, Xiangya Hospital
Central South University, Changsha 410008, China
| | - Chengxin Ruan
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| | - Yifang qin
- Department
of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310052, China
| | - Dongdong Li
- Ningxia
Medical University, Yinchuan, Ningxia 750004, China
| | - Ming Guan
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
- Joslin-Beth
Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for
Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pengfei Lei
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| |
Collapse
|