1
|
Jiang H, Xie Y, He M, Li J, Wu F, Guo H, Guo Y, Xie D, Mei Y, Gu J. Highly Thermally Conductive and Flame-Retardant Waterborne Polyurethane Composites with 3D BNNS Bridging Structures via Magnetic Field Assistance. NANO-MICRO LETTERS 2025; 17:138. [PMID: 39918689 PMCID: PMC11805750 DOI: 10.1007/s40820-025-01651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025]
Abstract
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices. Hence, a composite with three-dimensional network (Ho/U-BNNS/WPU) is developed by simultaneously incorporating magnetically modified boron nitride nanosheets (M@BNNS) and non-magnetic organo-grafted BNNS (U-BNNS) into waterborne polyurethane (WPU) to synchronous molding under a horizontal magnetic field. The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction, combined with the bridging structure established by U-BNNS, enable Ho/U-BNNS/WPU to exhibit exceptional in-plane (λ//) and through-plane thermal conductivities (λ⊥). In particular, with the addition of 30 wt% M@BNNS and 5 wt% U-BNNS, the λ// and λ⊥ of composites reach 11.47 and 2.88 W m-1 K-1, respectively, which representing a 194.2% improvement in λ⊥ compared to the composites with a single orientation of M@BNNS. Meanwhile, Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips. The composites also demonstrate excellent flame retardancy, with a peak heat release and total heat release reduced by 58.9% and 36.9%, respectively, compared to WPU. Thus, this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites, presenting broad application potential in electronic packaging fields.
Collapse
Affiliation(s)
- Hao Jiang
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuhui Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Mukun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jindao Li
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Feng Wu
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Hua Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yongqiang Guo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Delong Xie
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Yi Mei
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The International Joint Laboratory for Sustainable Polymers of Yunnan Province, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
2
|
Alebachew AW, Abdalkarim SYH, Zhu J, Wu S, Zhang Y, Yu HY, Yunusov KE. Two-directions mechanical strength and high-barrier mechanisms of cellulose nanocrystal- based hybrids reinforced packaging with nacre-mimetic structure. Carbohydr Polym 2025; 348:122910. [PMID: 39567142 DOI: 10.1016/j.carbpol.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
This work represents a new composite film with a nacre-mimetic structure through the alignment of hybrids comprising cellulose nanocrystals and ball-milled boron nitride (CNC-BNNS), within polypropylene carbonate (PPC) endowed with various properties. The impact of CNC-BNNS hybrids on mechanical strength mechanisms was evaluated under two-directional forces, marking the first such assessment. Using a solution casting approach, incorporating 5 % CNC-BNNS improved tensile strength by 67.6 % longitudinally and 4 % in the cross-sectional direction of the prepared PPC composite. Adding 5 %, CNC-BNNS increased the maximum degradation temperature by 12.1 °C and the glass transition temperature by 6.8 °C, as anticipated. Through synergies between CNC-BNNS and PPC, composite film with 15 % CNC-BNNS displayed enhanced barrier properties, notably reducing oxygen permeability (OP) and water vapor permeability (WVP) by 26.1 % and 90.9 %. Consequently, strawberries and blueberries packaged with these films saw extended shelf lives of up to 6 days. Furthermore, the degradation mechanisms of the composite in natural soil were investigated to assure the environmental issue, revealing a fast degradation rate of 44.5 % over 90 days. This study proposes a sustainable method for producing high-performance composite materials with antioxidant, liquid leakage resistance, and UV resistance, making them ideal for food packaging.
Collapse
Affiliation(s)
- Amare Worku Alebachew
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | | | - Shuping Wu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Huafon Group Co., Ltd, China.
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Academy of Sciences of the Republic of Uzbekistan, 100128 Tashkent, Uzbekistan
| |
Collapse
|
3
|
Ouyang Y, Zhang Z. Advancing high thermal conductivity: novel theories, innovative materials, and applications in thermal management technologies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:463002. [PMID: 39151465 DOI: 10.1088/1361-648x/ad7086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Effective thermal management is crucial for the performance and stability of modern electronics, emphasizing the demand for high thermal conductivity (κ). This review summarizes the latest development in highκ, discussing the emerging theories, innovative materials and practical applications for interfacial heat dissipation. Unique phononic thermal transport behaviors are discussed, including four phonon-phonon scattering, hydrodynamic phonons, surface phonon-polaritons, and more. The review also highlights innovative materials with highκ, such as two-dimensional pentagonal structures, boron carbon nitrogen structures, hexagonal boron arsenide andθ-phase tantalum nitride. In addition, the potential of polymer composites reinforced with highκfillers and surface engineering for advanced electronic applications are also discussed. By integrating these theoretical approaches and material innovations, this review offers comprehensive strategies for enhancing thermal management in modern electronic devices.
Collapse
Affiliation(s)
- Yulou Ouyang
- College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, People's Republic of China
| | - Zhongwei Zhang
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab for Nanophononics, MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
4
|
Singh B, Han J, Meziani MJ, Cao L, Yerra S, Collins J, Dumra S, Sun YP. Polymeric Nanocomposites of Boron Nitride Nanosheets for Enhanced Directional or Isotropic Thermal Transport Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1259. [PMID: 39120364 PMCID: PMC11314323 DOI: 10.3390/nano14151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Polymeric composites with boron nitride nanosheets (BNNs), which are thermally conductive yet electrically insulating, have been pursued for a variety of technological applications, especially those for thermal management in electronic devices and systems. Highlighted in this review are recent advances in the effort to improve in-plane thermal transport performance in polymer/BNNs composites and also the growing research activities aimed at composites of enhanced cross-plane or isotropic thermal conductivity, for which various filler alignment strategies during composite fabrication have been explored. Also highlighted and discussed are some significant challenges and major opportunities for further advances in the development of thermally conductive composite materials and their mechanistic understandings.
Collapse
Affiliation(s)
- Buta Singh
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Jinchen Han
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Mohammed J. Meziani
- Department of Natural Sciences, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Li Cao
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Subhadra Yerra
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Jordan Collins
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Simran Dumra
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA (S.D.)
| |
Collapse
|
5
|
Ravichandran V, Chandrashekar A, Prabhu TN, Varrla E. SPI-Modified h-BN Nanosheets-Based Thermal Interface Materials for Thermal Management Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34367-34376. [PMID: 38896498 DOI: 10.1021/acsami.4c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The rising concern over the usage of electronic devices and the operating environment requires efficient thermal interface materials (TIMs) to take away the excess heat generated from hotspots. TIMs are crucial in dissipating undesired heat by transferring energy from the source to the heat sink. Silicone oil (SO)-based composites are the most used TIMs due to their strong bonding and oxidation resistance. However, thermal grease performance is unreliable due to aging effects, toxic chemicals, and a higher percentage of fillers. In this work, TIMs are prepared using exfoliated hexagonal boron nitride nanosheets (h-BNNS) as a nanofiller, and they were functionalized by ecofriendly natural biopolymer soy protein isolate (SPI). The exfoliated h-BNNS has an average lateral size of ∼266 nm. The functionalized h-BNNS/SPI are used as fillers in the SO matrix, and composites are prepared using solution mixing. Hydrogen bonding is present between the organic chain/oxygen in silicone polymer, and the functionalized h-BNNS are evident from the FTIR measurements. The thermal conductivity of h-BNNS/SPI/SO was measured using the modified transient plane source (MTPS) method. At room temperature, the maximum thermal conductivity is 1.162 Wm-1K-1 (833% enhancement) at 50 wt % of 3:1 ratio of h-BNNS:SPI, and the thermal resistance (TR) of the composite is 5.249 × 106 K/W which is calculated using the Foygel nonlinear model. The heat management application was demonstrated by applying TIM on a 10 W LED bulb. It was found that during heating, the 50 wt % TIM decreases the surface temperature of LED by ∼6 °C compared with the pure SO-based TIM after 10 min of ON condition. During cooling, the modified TIM reduces the surface temperature by ∼8 °C under OFF conditions within 1 min. The results indicate that natural polymers can effectively stabilize and link layered materials, enhancing the efficiency of TIMs for cooling electronics and LEDs.
Collapse
Affiliation(s)
- Vanmathi Ravichandran
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| | - Akshatha Chandrashekar
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Peenya Industrial Area, Bangalore, Karnataka 560058, India
| | - T Niranjana Prabhu
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, M S Ramaiah University of Applied Sciences, Peenya Industrial Area, Bangalore, Karnataka 560058, India
| | - Eswaraiah Varrla
- Sustainable Nanomaterials and Technologies Lab, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India
| |
Collapse
|
6
|
Yan J, Cai Y, Zhang H, Han M, Liu X, Chen H, Cheng C, Lei T, Wang L, Wang H, Xiong S. Rapid Thermochromic and Highly Thermally Conductive Nanocomposite Based on Silicone Rubber for Temperature Visualization Thermal Management in Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7883-7893. [PMID: 38299449 DOI: 10.1021/acsami.3c17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.
Collapse
Affiliation(s)
- Junbao Yan
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Yuhan Cai
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hanwen Zhang
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueyang Liu
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Haojie Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Cui Cheng
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Tong Lei
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Luoxin Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hua Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Siwei Xiong
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| |
Collapse
|
7
|
Dou Z, Zhang B, Xu P, Fu Q, Wu K. Dry-Contact Thermal Interface Material with the Desired Bond Line Thickness and Ultralow Applied Thermal Resistance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019643 DOI: 10.1021/acsami.3c13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Efforts to directly utilize thixotropic polymer composites for out-of-plane thermal transport applications, known as thermal interface materials (TIMs), have been impeded by their mediocre applied thermal resistance (Reff) in a sandwiched structure. Different from traditional attempts at enhancing thermal conductivity, this study proposes a low-bond line thickness (BLT) path for mitigating the sandwiched thermal impedance. Taking the most common TIM, polydimethylsiloxane/aluminum oxide/zinc oxide (PDMS/Al2O3/ZnO), as an example, liquid metal is designed to on-demand localize at the Al2O3-polymer and Al2O3-filler interface regions, breaking rheological challenges for lowering the BLT. Specifically, during the sandwiched compression process, interfacial LM is just like the lubricant, dexterously promoting the relaxation of immobilized PDMS chains and helping fillers to flow through mitigating the internal friction between Al2O3 and adjacent filler. As a result, this TIM first time exhibits a boundary BLT (4.28 μm) that almost approaches the diameter of the maximum filler and performs an ultralow dry-contact Reff of 4.05 mm2 K/W at 40 psi, outperforming most reported and commercial dry-contact TIMs. This study of the low-BLT direction is believed to point to a new path for future research on high-performance TIMs.
Collapse
Affiliation(s)
- Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Xu
- Nanjing Marine Radar Institute, Nanjing 210014, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|