1
|
Merlo F, Cabrera-Codony A, Ghiglione R, Speltini A, Fontàs C, Anticò E, Profumo A. Activated char embedded in biodegradable film for antimicrobials removal: Towards sustainable water purification. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137768. [PMID: 40022932 DOI: 10.1016/j.jhazmat.2025.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The development of sustainable materials toward efficient pollutant removal is crucial for water remediation. Following a waste-to-wealth approach, we report a novel preparation of biodegradable film embedded with a biomass-derived activated char and its effective application for the removal of fluoroquinolones from aqueous solutions. The presence of these antimicrobials contributes to the worrying increase of environmental antimicrobial resistance and ecotoxicity since they are emerging and harmful pollutants, and requires effective solution for their removal. The impact of different parameters on the sorptive performance was evaluated (e.g., type of polymeric support and char, amount of char), revealing that the removal process strongly depends on the type and amount of activated char used, whereas the polycaprolactone only acts as a support immobilizing the char and facilitating the sample treatment. By simply suspending the film in the aqueous sample, it is possible to adsorb the target contaminants, with removal efficiency up to 80 % in 240 min and satisfactory cumulative sorption capacity (Q up to 14,000 μg g-1) in competitive conditions. The sorption process obeys second-order kinetics in all the water samples tested (potable water, river water and wastewater). Notably, the film demonstrated continued stable removal capabilities over multiple uses (up to five). This work provides a new strategy for exploring a novel and efficient film for water purification.
Collapse
Affiliation(s)
- Francesca Merlo
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy.
| | - Alba Cabrera-Codony
- LEQUIA Institute of the Environment, University of Girona, C/Maria Aurèlia Capmany, 69, Girona 17003, Spain
| | - Riccardo Ghiglione
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Andrea Speltini
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Clàudia Fontàs
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany, 69, Girona 17003, Spain
| | - Enriqueta Anticò
- Department of Chemistry, University of Girona, C/Maria Aurèlia Capmany, 69, Girona 17003, Spain
| | - Antonella Profumo
- Department of Chemistry, University ofi Pavia, Via Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
2
|
Wang W, Kuang N, Zhao W, Li Q. Mitigation of Membrane Fouling in Lignin Recovery from Black Liquor via Surface-Patterned Ceramic Membrane. Polymers (Basel) 2025; 17:1424. [PMID: 40430720 PMCID: PMC12114858 DOI: 10.3390/polym17101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Among the various methods for recovering lignin from black liquor, membrane separation has gained prominence in the paper industry due to its advantages of uniform molecular weight distribution, high recovery rates, and absence of secondary pollution. However, over time, lignin particles tend to deposit and form a cake layer on the membrane surface, leading to membrane fouling and a decline in filtration flux. To address this issue, this study investigates the construction of ceramic membranes with radial rib patterns, and examines the effects of different trans-membrane pressure differences and radial rib patterns on membrane surface shear force and particle deposition. The research findings indicate that at a trans-membrane pressure difference of 0.5 bar and a blade rotation speed of 1000 r/min, the membrane surface experiences the highest shear force. Compared with those without patterns, ceramic membranes with radial rib patterns can more effectively delay the deposition of particles. Furthermore, it was observed that ceramic membranes combining coarse and fine rib patterns exhibit a more pronounced increase in membrane surface shear force.
Collapse
Affiliation(s)
- Weikang Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (W.W.); (N.K.)
| | - Ning Kuang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (W.W.); (N.K.)
| | - Wenjie Zhao
- College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Qingdang Li
- College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
3
|
Camargos CM, Yang L, Jackson JC, Tanganini IC, Francisco KR, Ceccato-Antonini SR, Rezende CA, Faria AF. Lignin and Nanolignin: Next-Generation Sustainable Materials for Water Treatment. ACS APPLIED BIO MATERIALS 2025; 8:2632-2673. [PMID: 39933070 PMCID: PMC12015965 DOI: 10.1021/acsabm.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Water scarcity, contamination, and lack of sanitation are global issues that require innovations in chemistry, engineering, and materials science. To tackle the challenge of providing high-quality drinking water for a growing population, we need to develop high-performance and multifunctional materials to treat water on both small and large scales. As modern society and science prioritize more sustainable engineering practices, water treatment processes will need to use materials produced from sustainable resources via green chemical routes, combining multiple advanced properties such as high surface area and great affinity for contaminants. Lignin, one of the major components of plants and an abundant byproduct of the cellulose and bioethanol industries, offers a cost-effective and scalable platform for developing such materials, with a wide range of physicochemical properties that can be tailored to improve their performance for target water treatment applications. This review aims to bridge the current gap in the literature by exploring the use of lignin, both as solid bulk or solubilized macromolecules and nanolignin as multifunctional (nano)materials for sustainable water treatment processes. We address the application of lignin-based macro-, micro-, and nanostructured materials in adsorption, catalysis, flocculation, membrane filtration processes, and antimicrobial coatings and composites. Throughout the exploration of recent progress and trends in this field, we emphasize the importance of integrating principles of green chemistry and materials sustainability to advance sustainable water treatment technologies.
Collapse
Affiliation(s)
- Camilla
H. M. Camargos
- Departamento
de Artes Plásticas, Escola de Belas Artes, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Liu Yang
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Jennifer C. Jackson
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| | - Isabella C. Tanganini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Kelly R. Francisco
- Departamento
de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Sandra R. Ceccato-Antonini
- Departamento
de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, São Paulo 13600-970, Brazil
| | - Camila A. Rezende
- Departamento
de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Andreia F. Faria
- Engineering
School of Sustainable Infrastructure and Environment, Department of
Environmental Engineering Sciences, University
of Florida, Gainesville, Florida 32611-6540, United States
| |
Collapse
|
4
|
Surat'man NEB, Quek XL, Wang N, Ye E, Xu J, Li Z, Li B. Sustainable nanofibrous membranes for air filtration, water purification and oil removal. NANOSCALE 2025; 17:6427-6447. [PMID: 39946160 DOI: 10.1039/d4nr04673k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The increasing demand for sustainable solutions to address environmental and energy challenges has driven the development of advanced materials. Among them, nanofibrous membranes have emerged due to their high surface area, tunable porosity and versatile mechanical properties. However, traditional nanofibrous membranes, made from petroleum-based synthetic polymers, pose significant environmental concerns due to their non-biodegradability and reliance on fossil resources. This paper reviews recent advancements in the development of sustainable nanofibrous membranes, focusing on the use of biobased and biodegradable materials, and circular design approaches aimed at reducing environmental impact throughout the membrane life cycle. Challenges associated with improving the mechanical strength and stability of biopolymer-based nanofibers and expanding application areas are discussed. By highlighting strategies to overcome these limitations, this review aims to provide insights into the future direction of sustainable nanofibrous membranes, paving the way for their broader adoption in eco-friendly technological solutions.
Collapse
Affiliation(s)
- Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Xin Lin Quek
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Nannan Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Republic of Singapore
| | - Bofan Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
5
|
Sadare O, Zoumpouli GA, Chew YMJ, Wenk J, Castro-Dominguez B, Mattia D. Lignin- and Cellulose-Derived Sustainable Nanofiltration Polyelectrolyte Membranes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:2060-2071. [PMID: 39950106 PMCID: PMC11816010 DOI: 10.1021/acssuschemeng.4c08611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Nanofiltration (NF) polymeric membranes are typically made from fossil fuel-derived feedstocks and toxic solvents, requiring a shift to more sustainable materials. This study pioneers the use of two biopolymers-cationic lignin and sodium carboxymethyl cellulose-as polycation and polyanion, respectively, to fabricate a polyelectrolyte membrane (PEM) via the layer-by-layer method with water as the sole solvent and on a poly(ether sulfone) (PES) support. At a transmembrane pressure of 2 bar, the pure water permeance was 6 LMHB (L/m2 h bar) for 5 bilayers with a 96% rejection for positively charged methylene blue and 93% for negatively charged reactive orange-16, with a mass balance above 90%, indicating minimal adsorption on the membrane surface. The molecular weight cutoff (MWCO) of the PEM ranged from 300 and 620 Da, corresponding to a loose NF membrane. Additionally, the PEM demonstrated excellent stability after 30 days in deionized water, attributed to strong electrostatic interactions between the polyelectrolyte layers. This study demonstrates that effective NF membranes can be produced using sustainable biopolymeric materials and benign solvents. The efficient rejection of small, charged molecules makes the PEM membrane promising for protein removal, wastewater treatment, biotechnology, and pharmaceutical applications.
Collapse
Affiliation(s)
- Olawumi Sadare
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Garyfalia A. Zoumpouli
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Y. M. John Chew
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| | - Davide Mattia
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United
Kingdom
| |
Collapse
|
6
|
Jiang Y, An J, Zhai S, Gao X, Song J. Research progress on biomass-based materials for oil/water separation: Designing strategy and efficiency mechanism. Int J Biol Macromol 2024; 283:137646. [PMID: 39557241 DOI: 10.1016/j.ijbiomac.2024.137646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The treatment of water contaminated with oil or organic solvents has always been a thorny challenge, considering the complexity of water pollution, the susceptibility to secondary pollution and the consequent depletion of resources. Biomass is a versatile, green and self-circulating natural material that shows important potential in designing high-performance oil/water separation materials. This review highlights the recent research progress on biomass-based materials (BBMs) in the field of oil-water separation. Firstly, related properties for displaying definitions, sources and specificities on biomass materials are introduced, and the basic wetting theory of interfacial wettability is discussed. Secondly, representative nature-inspired designing strategies for oil-water separation materials are summarized. Finally, the current development prospects, future challenges and trends on BBM for oil-water separation are discussed as well. Hopefully, this review will provide some essential guidelines for the researchers to design novel oil/water separation materials with green, self-degradable, low-toxicity and readily available raw materials.
Collapse
Affiliation(s)
- Yuhui Jiang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China.
| | - Juan An
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Shangru Zhai
- School of Environmental and Nature Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China.
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, China
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, China
| |
Collapse
|
7
|
Chen D, Bao M, Ge H, Chen X, Ma W, Wang Z, Li Y. A Hydrogel-coated Wood Membrane with Intelligent Oil Pollution Detection for Emulsion Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401719. [PMID: 38874065 DOI: 10.1002/smll.202401719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Considering the potential threats posed by oily wastewater to the ecosystem, it is urgently in demand to develop efficient, eco-friendly, and intelligent oil/water separation materials to enhance the safety of the water environment. Herein, an intelligent hydrogel-coated wood (PPT/PPy@DW) membrane with self-healing, self-cleaning, and oil pollution detection performances is fabricated for the controllable separation of oil-in-water (O/W) emulsions and water-in-oil (W/O) emulsions. The PPT/PPy@DW is prepared by loading polypyrrole (PPy) particles on the delignified wood (DW) membranes, further modifying the hydrogel layer as an oil-repellent barrier. The layered porous structure and selective wettability endow PPT/PPy@DW with great separation performance for various O/W emulsions (≥98.69% for separation efficiency and ≈1000 L m-2 h-1 bar-1 for permeance). Notably, the oil pollution degree of PPT/PPy@DW can be monitored in real-time based on the changed voltage generated during O/W emulsion separation, and the oil-polluted PPT/PPy@DW can be self-cleaned by soaking in water to recover its separation performance. The high affinity of PPT/PPy@DW for water makes it effective in trapping water from the mixed surfactant-stabilized W/O emulsions. The prepared eco-friendly and low-cost multifunctional hydrogel wood membrane shows promising potential in on-demand oil/water separation and provides new ideas for the functional improvement of new biomass oil/water separation membrane materials.
Collapse
Affiliation(s)
- Dafan Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, P. R. China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Hongwei Ge
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| | - Wen Ma
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
8
|
Taghipour A, Karami P, Manikantan Sandhya M, Sadrzadeh M. An Innovative Surface Modification Technique for Antifouling Polyamide Nanofiltration Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37197-37211. [PMID: 38959422 DOI: 10.1021/acsami.4c06082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
In this study, we developed a novel surface coating technique to modify the surface chemistry of thin film composite (TFC) nanofiltration (NF) membranes, aiming to mitigate organic fouling while maintaining the membrane's permselectivity. We formed a spot-like polyester (PE) coating on top of a polyamide (PA) TFC membrane using mist-based interfacial polymerization. This process involved exposing the membrane surface to tiny droplets carrying different concentrations of sulfonated kraft lignin (SKL, 3, 5, and 7 wt %) and trimesoyl chloride (TMC, 0.2 wt %). The main advantages of this surface coating technique are minimal solvent consumption (less than 0.05 mL/cm2) and precise control over interfacial polymerization. Zeta potential measurements of the coated membranes exhibited enhancements in negative charge compared to the control membrane. This enhancement is attributed to the unreacted carboxyl functional groups of the SKL and TMC monomers, as well as the presence of sulfonate groups (SO3) in the structure of SKL. AFM results showed a notable decrease in membrane surface roughness after polyester coating due to the slower diffusion of SKL to the interface and a milder reaction with TMC. In terms of fouling resistance, the membrane coated with a polyester composed of 7 wt % SKL showed a 90% flux recovery ratio (FRR) during Bovine Serum Albumin (BSA) filtration, showing a 15% improvement compared to the control membrane (PA). PE-coated membranes provided stable separation performance over 40 h of filtration. The sodium chloride rejection and water flux displayed minimal variations, indicating the robustness of the coating layer. The final section of the presented study focuses on assessing the feasibility of scaling up and the cost-effectiveness of the proposed technique. The demonstrated ease of scalability and a notable reduction in chemical consumption establish this method as a viable, environmentally friendly, and sustainable solution for surface modification.
Collapse
Affiliation(s)
- Amirhossein Taghipour
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Pooria Karami
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mahesh Manikantan Sandhya
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, Bhopal 462 066, Madhya Pradesh, India
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-241 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|