1
|
Xiang C, Peng J, Wu D, Feng D, Lu X, Huang M, Zhao B. Green-Solvent-Processed All-Polymer Solar Cells with Enhanced Efficiency and Stability through Molecular Design and Side-Chain Engineering. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18711-18719. [PMID: 40072306 DOI: 10.1021/acsami.5c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Green-solvent-processed all-polymer solar cells (AP-SCs) are regarded as an excellent candidate for renewable energy due to their better stability and eco-friendly features. Two polymers, PYF-U and PYF-BO, have been designed by introducing a Y-series derivative with difluoro-substituted dicyanindenone units and a difluorobenzotriazole derivative as the first and second electron-deficient (A) units, respectively. The introduction of two additional F atoms on dicyanindenone units leads to a more coplanar backbone because of noncovalent interactions. Compared with the polymer PYF-U with undecyl chains on thiophene, the polymer PYF-BO with 2-butyloctyl chains exhibits stronger intermolecular aggregation during the film-forming process, more dominant face-on molecular packing, and higher crystallinity in films. Therefore, the PM6:PYF-BO AP-SC achieves an efficiency of 15.38%, outperforming that of the PM6:PYF-U device (14.27%). Moreover, the former exhibits a longer T80 lifetime (1789 h) than the latter (826 h) under thermal aging at 65 °C because of better molecular packing and morphology. Our research demonstrates that combining noncovalent interactions to enhance the coplanarity of the polymeric backbone with side-chain engineering to optimize molecular packing and blend-film morphology is one of the efficient strategies for developing high-performance polymer acceptors.
Collapse
Affiliation(s)
- Changhao Xiang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jiaxun Peng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dakang Wu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dinglong Feng
- Department of Physics, The Chinese University of Hong Kong, New Territories, Kowloon 999077, Hong Kong, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Kowloon 999077, Hong Kong, China
| | - Meihua Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Bin Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
2
|
Crociani L. The Double-Cross of Benzotriazole-Based Polymers as Donors and Acceptors in Non-Fullerene Organic Solar Cells. Molecules 2024; 29:3625. [PMID: 39125030 PMCID: PMC11313701 DOI: 10.3390/molecules29153625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Organic solar cells (OSCs) are considered a very promising technology to convert solar energy to electricity and a feasible option for the energy market because of the advantages of light weight, flexibility, and roll-to-roll manufacturing. They are mainly characterized by a bulk heterojunction structure where a polymer donor is blended with an electron acceptor. Their performance is highly affected by the design of donor-acceptor conjugated polymers and the choice of suitable acceptor. In particular, benzotriazole, a typical electron-deficient penta-heterocycle, has been combined with various donors to provide wide bandgap donor polymers, which have received a great deal of attention with the development of non-fullerene acceptors (NFAs) because of their suitable matching to provide devices with relevant power conversion efficiency (PCE). Moreover, different benzotriazole-based polymers are gaining more and more interest because they are considered promising acceptors in OSCs. Since the development of a suitable method to choose generally a donor/acceptor material is a challenging issue, this review is meant to be useful especially for organic chemical scientists to understand all the progress achieved with benzotriazole-based polymers used as donors with NFAs and as acceptors with different donors in OSCs, in particular referring to the PCE.
Collapse
Affiliation(s)
- Laura Crociani
- Institute of Condensed Matter Chemistry and Energy Technologies, ICMATE, National Research Council of Italy, CNR, Corso Stati Uniti 4, 35127 Padua, Italy
| |
Collapse
|
3
|
Peng J, Meng F, Cheng J, Lai X, Du M, Huang M, Zhang J, He F, Zhou E, Zhao D, Zhao B. Noncovalent Interaction Boosts Performance and Stability of Organic Solar Cells Based on Giant-Molecule Acceptors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7317-7326. [PMID: 38305907 DOI: 10.1021/acsami.3c18325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Designing giant-molecule acceptors is deemed as an up-and-coming strategy to construct stable organic solar cells (OSCs) with high performance. Herein, two giant dimeric acceptors, namely, DYV and DYFV, have been designed and synthesized by linking two Y-series derivatives with a vinyl unit. DYFV exhibits more red-shifted absorption, down-shifted energy levels, and enhanced intermolecular packing than DYV because the intramolecular noncovalent interaction (H···F) of DYFV leads to better coplanarity of the backbone. The D18:DYFV film owns a distinct nanofibrous nanophase separation structure, a more dominant face-on orientation, and more balanced carrier mobilities. Therefore, the D18:DYFV OSC achieves a higher photoelectron conversion efficiency of 17.88% and a longer-term stability with a t80 over 45,000 h compared with the D18:DYV device. The study demonstrates that the intramolecular noncovalent interaction is a superior strategy to design giant-molecule acceptors and boost the photovoltaic performance and stability of the OSCs.
Collapse
Affiliation(s)
- Jiaxun Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jing Cheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xue Lai
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengzhen Du
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Meihua Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology, Beijing 100190, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Erjun Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Bin Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|