1
|
Liu X, Feng Z, Ran Z, Zeng Y, Cao G, Li X, Ye H, Wang M, Liang W, He Y. External Stimuli-Responsive Strategies for Surface Modification of Orthopedic Implants: Killing Bacteria and Enhancing Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67028-67044. [PMID: 38497341 DOI: 10.1021/acsami.3c19149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bacterial infection and insufficient osteogenic activity are the main causes of orthopedic implant failure. Conventional surface modification methods are difficult to meet the requirements for long-term implant placement. In order to better regulate the function of implant surfaces, especially to improve both the antibacterial and osteogenic activity, external stimuli-responsive (ESR) strategies have been employed for the surface modification of orthopedic implants. External stimuli act as "smart switches" to regulate the surface interactions with bacteria and cells. The balance between antibacterial and osteogenic capabilities of implant surfaces can be achieved through these specific ESR manifestations, including temperature changes, reactive oxygen species production, controlled release of bioactive molecules, controlled release of functional ions, etc. This Review summarizes the recent progress on different ESR strategies (based on light, ultrasound, electric, and magnetic fields) that can effectively balance antibacterial performance and osteogenic capability of orthopedic implants. Furthermore, the current limitations and challenges of ESR strategies for surface modification of orthopedic implants as well as future development direction are also discussed.
Collapse
Affiliation(s)
- Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhili Ran
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Guining Cao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Huiling Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Meijing Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Liu J, Chen Z, Zhan T, Xin C, Min S, Wu X, Huang Y, Xu B. Janus Antipyretic Pastes for Efficient, Durable and Comfortable Personal Physical Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65667-65676. [PMID: 39535546 DOI: 10.1021/acsami.4c16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Prompt and prolonged cooling is extremely important when the body is in a fever state. Here, we proposed a concept of Janus antipyretic paste (JAP) with unique asymmetric wetting for effective and durable personal physical cooling. The prepared JAP possesses greater one-way transport capacity, and faster average water evaporation rate (∼2 times) than the original fabric. Compared to the wet cotton fabric (a reduction of ∼2.9 °C) and medical antipyretic paste (MAP) (no cooling after 5 h), the JAP achieved the best cooling effect and long cooling duration (cooling by 3.8 °C, at least 5-7 h) in practical application tests. In addition, the wearability of JAP is well validated, including its excellent breathability and good flexibility, which can maximum improve the comfort of our body. We believe the new JAP with superior cooling and comfort properties will provide promising design guidelines for the next generation of family or hospital physical cooling products.
Collapse
Affiliation(s)
- Jiahao Liu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhihao Chen
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tonghuan Zhan
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chen Xin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuqiang Min
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xianchang Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yange Huang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bing Xu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
3
|
Cheng J, Bai J, Guo J, Yu X, Fan Z, Guo M, Cheng B. Yarn-Based Degradable Janus PPDO Fabric for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39360334 DOI: 10.1021/acsami.4c15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The growing high standard of people's wear has put forward requirements for fabrics, and multifunctional fabrics have been developed precisely in response to the requirements of the times. However, the incineration of waste fabrics produces a large amount of pollutants, resulting in a massive waste of resources and environmental pollution. Herein, the degradable nanofiber yarns (NYs) with self-cleaning properties were fabricated by in situ growth of SiO2 nanoparticles on the surface of the electrospun poly(p-dioxanone) (PPDO) NYs using the Stöber method. Then, the PPDO NYs were blended with carbon fibers and the PPDO/SiO2 NYs with themselves to form the Janus PPDO fabrics, respectively. The Janus PPDO fabric offered asymmetric wettability and dual personal thermal management properties. The PPDO/C side of the Janus PPDO fabric provided 65.8 °C at 1.5 V or 58.5 °C under one sunlight intensity for radiative heating. The PPDO/SiO2 side exhibited high solar reflectivity (81.8%) and mid-infrared (MIR) emissivity (99.1%), which reduced the skin temperature by 4.6 °C, resulting in radiative cooling. Moreover, the Janus PPDO fabrics display an excellent electromagnetic interference (EMI) shielding performance (53.3 dB). Therefore, yarn-based degradable Janus fabric has a promising future in multifunctional wearable products.
Collapse
Affiliation(s)
- Jinxue Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiulin Bai
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Junyu Guo
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaoliang Yu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Minjie Guo
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|