1
|
Zhang P, Li J, Xing S, Jia Q, Wang J, Bi J, Guo Z, Wang L, Ji ZY, Qu L. Solar Evaporators for Saline Water: Sustainable Clean Water Harvesting and Critical Mineral Resources Extraction. ACS NANO 2025; 19:11625-11647. [PMID: 40114309 DOI: 10.1021/acsnano.5c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Solar-driven interfacial water evaporation (SIWE) can efficiently utilize solar energy to separate or extract various ions from saline water, providing an environmentally friendly, economical, and sustainable approach to clean water and critical mineral resources harvesting. However, for ongoing practical implementation, solid salt accumulation at the interface will inevitably impair the SIWE performance, while direct disposal of residual concentrated brine poses significant environmental risks. As such, advancing solar evaporators for sustainable clean water harvesting and critical mineral resources extraction is pivotal in the resources-energy-environment nexus. Critically, this review spotlights the latest research progress in engineering nonselective salt-rejecting solar evaporators (NS-SRSEs) for sustainable desalination, emphasizing interfacial structural design and surface modification. We then delineate our endeavors aimed at the construction strategies of selective salt-extraction solar evaporators (S-SESEs) for getting access to critical mineral resources such as uranium and lithium. Finally, current challenges and opportunities are outlined in the high-value saline water utilization of NS-SRSE and S-SESE for real-world applications that balance high efficiency, durability, and adaptability with a low environmental impact. Looking ahead, we anticipate ongoing advancements in promoting solar evaporators from laboratory research to practical applications, contributing to global efforts in sustainable water management and critical mineral resources recovery.
Collapse
Affiliation(s)
- Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jie Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Shijie Xing
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qiang Jia
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jing Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhiyuan Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Lei Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhi-Yong Ji
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Zhang X, Yu Y, Liang J, Xie W, Chang G, Li R. Multilayered CWO/MXene/PANI-Coated Thermoplastic Expanded Microsphere Sponge for Enhanced Solar Desalination Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7723-7731. [PMID: 40077930 DOI: 10.1021/acs.langmuir.4c05374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Interfacial solar-driven evaporation (ISDE) is a promising method for addressing the global freshwater shortage. However, it remains challenging to develop an ISDE system that combines high evaporation rates, low cost, ease of processing, and self-floatability. In this study, we present a flexible, porous sponge photothermal material based on three-dimensional thermoplastic expanded microspheres (TEMs). TEMs feature a unique hollow structure, which provides thermal insulation and minimizes heat loss. Flexible porous sponges were selected as the water transport medium in the evaporation zone, while CWO, MXene, and PANI were used as photothermal absorbing coatings on the TEMs. These three photothermal materials possess distinct absorption spectra, allowing for multilayered light absorption and enabling full-spectrum sunlight utilization. The resulting flexible multi-TEMs@PANI/MXene/CWO sponge exhibits excellent properties, including low thermal conductivity, high absorption, and efficient thermal conversion. The system achieved an evaporation rate of 2.07 kg·m-2·h-1 under primary light and a photothermal conversion efficiency of 89.7%. This work offers a controllable, environmentally friendly, and stable strategy to address the pressing issue of freshwater scarcity.
Collapse
Affiliation(s)
- Xiandong Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yan Yu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jiajiu Liang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenjing Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guangtao Chang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| | - Ruoxin Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Liu Y, Pan S, Xia W, Qin P, Wang W, Liu Q, Chen X, Ma L, Ding S, Wang Q. Strong interaction between plasmon and topological surface state in Bi 2Se 3/Cu 2-xS nanowires for solar-driven photothermal applications. SCIENCE ADVANCES 2025; 11:eadt2884. [PMID: 40073118 PMCID: PMC11900859 DOI: 10.1126/sciadv.adt2884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Developing high-performance photothermal materials and unraveling the underlying mechanism are essential for photothermal applications. Here, photothermal performance improved by strong interaction between plasmon and topological surface state (TSS) is demonstrated in Bi2Se3/Cu2-xS nanowires. This hybrid, which Cu2-xS nanosheets were grown on Bi2Se3 nanowires, leverages the plasmon resonance and TSS-induced optical property, generating wide and efficient light absorption. A series of tests reveals the strong resonance coupling, TSS-induced hot electron injection, and plasmon-induced hot hole relaxation within the hybrids, endowing the Bi2Se3/Cu2-xS with excellent photothermal performance. By integrating the hybrids into a hydrogel with a thermoelectric module, the Bi2Se3/Cu2-xS evaporator achieves a remarkable water evaporation rate of 3.67 kilograms per square meter per hour with a solar-to-vapor efficiency of 95.2%, and a maximum output power of 1.078 watts per square meter under simulated sunlight irradiation. Moreover, a conical mirror was introduced to the device, which greatly enhances the evaporation rate and maximum output power without additional energy input.
Collapse
Affiliation(s)
- Yang Liu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Shengfeng Pan
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wenxi Xia
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Pingli Qin
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wei Wang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Qingbo Liu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xiangbai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Sijing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, P. R. China
| | - Ququan Wang
- Department of Physics and Guangdong Basic Research Center of Excellence for Quantum Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Advanced Thermoelectric Materials and Device Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Lv F, Miao J, Wang Z, Hu J, Orejon D. Polyanionic Electrolyte Ionization Desalination Empowers Continuous Solar Evaporation Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410290. [PMID: 39690819 DOI: 10.1002/adma.202410290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Solar evaporation contributes to sustainable and environmentally friendly production of fresh water from seawater and wastewater. However, poor salt resistance and high degree of corrosion of traditional evaporators in brine make their implementation in real applications scarce. To overcome such deficiency, a polyanionic electrolyte functionalization strategy empowering excellent uniform desalination performance over extended periods of time is exploited. This 3D superhydrophilic graphene oxide solar evaporator design ensures stable water supply by the enhanced self-driving liquid capillarity and absorption at the evaporation interface as well as efficient vapor diffusion. Meanwhile, the polyanionic electrolyte functionalization implemented via layer-by-layer static deposition of polystyrene sodium sulfonate effectively regulates/minimizes the flux of salt ions by exploiting the Donnan equilibrium effect, which eventually hinders local salt crystallization during long-term operation. Stable evaporation rates in line with the literature of up to 1.68 kg m-2 h-1 are achieved for up to 10 days in brine (15‰ salinity) and for up to 3 days in seawater from Hangzhou Bay in the East China Sea (9‰ salinity); while, maintaining evaporation efficiencies of ≈90%. This work demonstrates the excellent benefits of polyanionic electrolyte functionalization as salt resistance strategy for the development of high-performance solar powered seawater desalination technology and others.
Collapse
Affiliation(s)
- Fengyong Lv
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jie Miao
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhongyu Wang
- School of Urban Construction and Safety Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Daniel Orejon
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, Scotland, EH9 3FD, UK
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Zhu C, Wang D, Bu S, Wu Z, Zhang J, Wang Q. Nanofluid-peroxydisulfate integrated volumetric solar interfacial evaporation system for water evaporation and organic pollutant removal. WATER RESEARCH X 2025; 26:100293. [PMID: 39720316 PMCID: PMC11667070 DOI: 10.1016/j.wroa.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024]
Abstract
Solar evaporation exhibits significant potential for the treatment of high-salt organic wastewater. However, it's also confronted with challenges due to the accumulation of organic pollutants and salts in the concentrated wastewater following evaporation, which compromises the long-term stability of evaporation unit and complicates subsequent treatment processes. To address these challenges, a volumetric solar interfacial evaporation (V-SIE) system by integrating Fe3O4 -H2O nanofluids and peroxydisulfate (PDS) were proposed in this study. In V-SIE system, Fe3O4 magnetic nanoparticles (NPs) were prepared as solar receivers to form a volume-absorbing solar energy interface and enhance evaporation efficiency. The results show that the evaporation rate was 1.412 kg/(m2·h) and the solar efficiency reached 93.75 % as the temperature rose to 57.2 ℃. Additionally, the high thermal conductivity of Fe3O4 facilitated the effective heat transfer to the fluid and provided sufficient thermal energy to activate PDS, thereby removing 99.3 % of Rhodamine B (RhB). Fe3O4 NPs effectively promoted the generation of reactive species including SO4 ·-, ·OH, O2 ·- and 1O2 from PDS and the four main stages including N-de-ethylation, chromophore cleavage, ring-opening, and mineralization were proposed as the possible degradation pathway of RhB. This study provides a reference for developing V-SIE system and highlights the positive effect of nanofluids in advanced oxidation processes.
Collapse
Affiliation(s)
- Chenqi Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Debing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiying Bu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Du Y, Zhang H, Zou L, Li X, Lv X, Ye J, Deng K, Tian W, Ji J. Manipulating 2D Membrane Interlayer Channels with Accelerated Mass-Transfer Behavior to Boost Solar Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402105. [PMID: 38727184 DOI: 10.1002/smll.202402105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Indexed: 10/01/2024]
Abstract
The scarcity of fresh water necessitates sustainable and efficient water desalination strategies. Solar-driven steam generation (SSG), which employs solar energy for water evaporation, has emerged as a promising approach. Graphene oxide (GO)-based membranes possess advantages like capillary action and Marangoni effect, but their stacking defects and dead zones of flexible flakes hinders efficient water transportation, thus the evaporation rate lag behind unobstructed-porous 3D evaporators. Therefore, fundamental mass-transfer approach for optimizing SSG evaporators offers new horizons. Herein, a universal multi-force-fields-based method is presented to regularize membrane channels, which can mechanically eliminate inherent interlayer stackings and defects. Both characterization and simulation demonstrate the effectiveness of this approach across different scales and explain the intrinsic mechanism of mass-transfer enhancement. When combined with a structurally optimized substrate, the 4Laponite@GO-1 achieves evaporation rate of 2.782 kg m-2 h-1 with 94.48% evaporation efficiency, which is comparable with most 3D evaporators. Moreover, the optimized membrane exhibits excellent cycling stability (10 days) and tolerance to extreme conditions (pH 1-14, salinity 1%-15%), verifies the robust structural stability of regularized channels. This optimization strategy provides simple but efficient way to enhance the SSG performance of GO-based membranes, facilitating their extensive application in sustainable water purification technologies.
Collapse
Affiliation(s)
- Yuping Du
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - He Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Lie Zou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xiaoke Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, P. R. China
| | - Jiahui Ye
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kuan Deng
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wen Tian
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
7
|
Wei D, Wang C, Shi G, Zhang J, Wang F, Tan P, Zhao Z, Xie Y. Enabling Self-Adaptive Water-Energy-Balance of Photothermal Water Diode Evaporator: Dynamically Maximizing Energy Utilization Under the Ever-Changing Sunlight. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309507. [PMID: 38273713 DOI: 10.1002/adma.202309507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Maintaining a match between input solar energy and required energy by water supply management is key to achieving efficient interfacial solar-driven evaporation (ISDE). In practice, the solar radiation flux is constantly changing throughout the day, so keeping a dynamic water-energy-balance of ISDE is a big challenge. Herein, a photothermal water diode (WD) evaporator concept is proposed by an integrated hydrophilic/hydrophobic Janus absorber to overcome the issue. Due to the unique unidirectional water transport properties induced by asymmetric wettability, a self-adaptive balance between photothermal energy input and water uptake is established, thus realizing the energy matching and utilization maximization. The experimental and simulation results exhibit that with the increase of sunlight intensity, the water supply speed is significantly accelerated due to the dynamic management and self-regulation on water replenishment. Therefore, an excellent evaporation rate of up to 2.14 kg m-2 h-1 with a high efficiency of 93.7% under 1 sun illumination is achieved. This water diode engineering with Janus wettability provides a novel strategy and extends the path for designing solar evaporation systems with diverse water supply properties, which shows great potential in different environmental conditions.
Collapse
Affiliation(s)
- Dan Wei
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Guoliang Shi
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jing Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Fan Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Puxin Tan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Zexiang Zhao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yunong Xie
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
8
|
Xue Q, Xiao P, Gu J, Wang W, Yan L, Chen T. Superhydrophobic sand evaporator with core-shell structure for long-term salt-resistant solar desalination. WATER RESEARCH 2024; 253:121290. [PMID: 38367377 DOI: 10.1016/j.watres.2024.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Solar-driven water evaporation, as an environmentally benign pathway, provides an opportunity for alleviating global clean water scarcity. However, the rapidly generated interfacial steam and localized heating could cause increased salt concentration and accumulation, deteriorating the evaporation performance and long-term stability. Herein, a novel superhydrophobic sand solar (FPPSD) evaporator with a core-shell structure was proposed through interface functionalization for continuous photothermal desalination. The collective behavior essence of the sand aggregate gave itself micron-scale self-organized pores and configurable shapes, generating desirable capillary force and supplying effective water-pumping channels. More importantly, combining the dopamine, polypyrrole (PPy), and 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTS) through π-π conjugation and multiple hydrogen bonding effects gave the FPPSD evaporator with stable superhydrophobic property and highly efficient photothermal conversion capability. Therefore, the FPPSD evaporator showed a continuous and stable photothermal performance even after 96 h continuous evaporation under 3-sun irradiation for 10 wt% saline solution, among the best values in the reported works of literature, demonstrating its excellent salt-resistance stability. Furthermore, this novel FPPSD evaporator displayed outstanding environmental stability that kept its initial water transport capacity even after being treated under harsh conditions for 30 days. With excellent salt-resistance ability and stable environmental stability, the FPPSD evaporator will provide an attractive platform for sustainable solar-driven water management.
Collapse
Affiliation(s)
- Qingyang Xue
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Jincui Gu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China.
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Luke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang' an University, Xi'an 710064, China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China.
| |
Collapse
|
9
|
Li M, Bai W, Yang Y, Zhang X, Wu H, Li Y, Xu Y. Waste Tea-Derived Theabrownins for Solar-Driven Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10158-10169. [PMID: 38354064 DOI: 10.1021/acsami.3c18438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Solar-driven seawater desalination has been considered an effective and sustainable solution to mitigate the global freshwater crisis. However, the substantial cost associated with photothermal materials for evaporator fabrication still hinders large-scale manufacturing for practical applications. Herein, we successfully obtained high yields of theabrownins (TB), which were oxidation polymerization products of polyphenols from waste and inferior tea leaves using a liquid-state fermentation strategy. Subsequently, a series of photothermal complexes were prepared based on the metal-phenolic networks assembled from TB and metal ions (Fe(III), Cu(II), Ni(II), and Zn(II)). Also, the screened TB@Fe(III) complexes were directly coated on a hydrophilic poly(vinylidene fluoride) (PVDF) membrane to construct the solar evaporation device (TB@Fe(III)@PVDF), which not only demonstrated superior light absorption property and notable hydrophilicity but also achieved a high water evaporation rate of 1.59 kg m-2 h-1 and a steam generation efficiency of 90% under 1 sun irradiation. More importantly, its long-term stability and exceptionally low production cost enabled an important step toward the possibility of large-scale practical applications. We believe that this study holds the potential to pave the way for the development of sustainable and cost-effective photothermal materials, offering new avenues for utilization of agriculture resource waste and solar-driven water remediation.
Collapse
Affiliation(s)
- Maoyun Li
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanjie Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Xueqian Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| | - Yuanting Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610041, China
| |
Collapse
|