1
|
Vlasova KY, Kerr A, Pennock ND, Jozic A, Sahel DK, Gautam M, Murthy NTV, Roberts A, Ali MW, MacDonald KD, Walker JM, Luxenhofer R, Sahay G. Synthesis of ionizable lipopolymers using split-Ugi reaction for pulmonary delivery of various size RNAs and gene editing. Nat Commun 2025; 16:4021. [PMID: 40301362 PMCID: PMC12041268 DOI: 10.1038/s41467-025-59136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
We present an efficient method for synthesizing cationic poly(ethylene imine) derivatives using the multicomponent split-Ugi reaction to create a library of functional ionizable lipopolymers. Here we show 155 polymers, formulated into polyplexes, to establish structure-activity relationships essential for endosomal escape and transfection. A lead structure is identified, and lipopolymer-lipid hybrid nanoparticles are developed to deliver mRNA to lung endothelium and immune cells, including T cells, with low in vivo toxicity. These nanoparticles show significant improvements in mRNA delivery to the lung compared to in vivo-JetPEI® and demonstrate effective delivery of therapeutic mRNA(s) of various sizes. IL-12 mRNA-loaded nanoparticles delay Lewis Lung cancer progression, while human CFTR mRNA restores CFTR protein function in CFTR knockout mice. Additionally, we demonstrate in vivo CRISPR-Cas9 mRNA delivery, achieving gene editing in lung tissue and successful PD-1 knockout in T cells in mice. These results highlight the platform's potential for systemic gene therapy delivery.
Collapse
Affiliation(s)
- K Yu Vlasova
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - A Kerr
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - N D Pennock
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - A Jozic
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - D K Sahel
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - M Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - N T V Murthy
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
| | - A Roberts
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - M W Ali
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - K D MacDonald
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - J M Walker
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental, and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - R Luxenhofer
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, Helsinki, Finland.
| | - G Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy at Oregon State University, Corvallis, OR, USA.
- Center for Innovative Drug Delivery and Imaging, College of Pharmacy, Oregon State University & Oregon Health & Sciences University, Portland, OR, USA.
| |
Collapse
|
2
|
Maeki M, Ishida A, Tokeshi M. Microfluidic technologies for protein crystallography: advances and applications. ANAL SCI 2025:10.1007/s44211-025-00767-z. [PMID: 40257729 DOI: 10.1007/s44211-025-00767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/30/2025] [Indexed: 04/22/2025]
Abstract
Three-dimensional protein structure determination by X-ray crystallography is essential for understanding biological function and accelerating drug discovery. However, obtaining high-quality protein crystals remains a significant bottleneck. The conventional crystallization methods are often labor-intensive, require large sample volumes, and offer limited control over the crystallization environment. This review summarizes the application of microfluidic technologies to protein crystallography with a focus on their advantages over the conventional crystallization methods. Microfluidic devices enable nanoliter-scale sample handling, precise control over crystallization conditions, and high-throughput screening, addressing major limitations of the conventional approaches. This review introduces various microfluidic platforms, including droplet-based and microwell-based systems, for protein crystallization, crystal growth control, and on-chip X-ray diffraction analysis. The review also covers the use of microfluidics for creating diffusion-controlled crystal growth environments, real-time crystal growth measurement, on-chip X-ray diffraction measurement, and room-temperature X-ray crystallography with automated data processing.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan.
- RIKEN, SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo, 679-5148, Japan.
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan.
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-Ku, Sapporo, 060-8628, Japan
| |
Collapse
|
3
|
Hu J, Arvejeh PM, Bone S, Hett E, Marincola FM, Roh KH. Nanocarriers for cutting-edge cancer immunotherapies. J Transl Med 2025; 23:447. [PMID: 40234928 PMCID: PMC12001629 DOI: 10.1186/s12967-025-06435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer immunotherapy aims to harness the body's own immune system for effective and long-lasting elimination of malignant neoplastic tissues. Owing to the advance in understanding of cancer pathology and immunology, many novel strategies for enhancing immunological responses against various cancers have been successfully developed, and some have translated into excellent clinical outcomes. As one promising strategy for the next generation of immunotherapies, activating the multi-cellular network (MCN) within the tumor microenvironment (TME) to deploy multiple mechanisms of action (MOAs) has attracted significant attention. To achieve this effectively and safely, delivering multiple or pleiotropic therapeutic cargoes to the targeted sites of cancerous tissues, cells, and intracellular organelles is critical, for which numerous nanocarriers have been developed and leveraged. In this review, we first introduce therapeutic payloads categorized according to their predicted functions in cancer immunotherapy and their physicochemical structures and forms. Then, various nanocarriers, along with their unique characteristics, properties, advantages, and limitations, are introduced with notable recent applications in cancer immunotherapy. Following discussions on targeting strategies, a summary of each nanocarrier matching with suitable therapeutic cargoes is provided with comprehensive background information for designing cancer immunotherapy regimens.
Collapse
Affiliation(s)
- Joyce Hu
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | - Pooria M Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sydney Bone
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Erik Hett
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | | | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
- Biotechnology Science and Engineering Program, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
4
|
Wu J, Liang J, Li S, Lu J, Zhou J, Gao M, Zhang Y, Chen J. DNA nanovaccines derived from ferritin-modified glycogens for targeted delivery to immature dendritic cells and for promotion of Th1 cell differentiation. Acta Biomater 2025; 196:436-452. [PMID: 40023466 DOI: 10.1016/j.actbio.2025.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
DNA vaccines have emerged as a powerful approach for advanced cancer therapy. Despite the development of various delivery systems to enhance the immunogenicity of DNA vaccines, many still face challenges such as limited DNA condensation, rapid degradation in vivo and insufficient targeting to lymph nodes (LNs). Synthetic dendrimers with modifiable surfaces exhibit high efficiency in DNA condensation, but their synthesis is extremely complex. This study utilizes cationic glycogen, a natural branched dendrimer-like polymer, as the core structure for efficient DNA condensation and delivery, ensuring good biocompatibility. By connecting ferritin light chain to the glycogen surfaces, active targeting of LNs can be achieved due to its affinity for the SCARA5 receptor on immature dendritic cells (DCs), facilitating vaccine migration to the LNs. In addition, a seperate plasmid encoding adjuvant IL-12 was co-delivered to further boost the immunogenicity of the DNA nanovaccine. In vivo and in vitro experiments confirmed the effective transfection capability of this DNA vaccine, demonstrating promoted DC maturation, increased antigen presentation, and Th1 cell differentiation, resulting in improved anti-tumor efficiency in vivo. This innovative multi-gene co-loaded DNA vaccine offers valuable insights into combined gene therapy and broadens the research horizon on non-viral gene carriers. STATEMENT OF SIGNIFICANCE: The DNA vaccine encounters challenges such as limited DNA condensation, rapid degradation and insufficient targeting to lymph nodes (LNs), resulting in generally weak immunogenicity. In the current study, a novel nanovaccine is developed by connecting ferritin light chain to natural dendrimer glycogen, for simultaneous delivery of dual plasmids. The cationized glycogen provides strong DNA condensation ability, while ensuring excellent stability of the nanovaccine. The presence of ferritin light chain leads to effective targeting of dendritic cells (DCs), facilitating its migration to LNs. Moreover, the plasmid encoding the adjuvant IL-12 is co-incorporated with the antigen plasmid to mitigate the immunosuppression environment. This strategy significantly improves the immunogenicity of DNA vaccines, demonstrating high efficiency in cancer immunotherapy.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; School of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jing Liang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Sichen Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Jinjin Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
5
|
Hosseini-Kharat M, Wignall A, Mekonnen ZA, Ung BSY, Chereda B, Bremmell KE, Grubor-Bauk B, Prestidge CA. Microfluidic Optimization of PEI-Lipid Hybrid Nanoparticles for Efficient DNA Delivery and Transgene Expression. Pharmaceutics 2025; 17:454. [PMID: 40284449 PMCID: PMC12030462 DOI: 10.3390/pharmaceutics17040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Lipid nanoparticles (LNPs) and polyethyleneimine (PEI) have independently been used for DNA complexation and delivery. However, non-ideal gene delivery efficiency and toxicity have hindered their clinical translation. We developed DNA-PEI-LNPs as a strategy to overcome these limitations and enhance DNA delivery and transgene expression. Methods: Three microfluidic mixing protocols were evaluated: (i) LNPs without PEI, (ii) a single-step process incorporating PEI in the organic phase, and (iii) a two-step process with DNA pre-complexed with PEI before LNP incorporation. The influence of DNA/PEI ratios (1:1, 1:2, 1:3) and DNA/lipid ratios (1:10, 1:40) on particle properties and delivery efficiency was examined. Results: In luciferase formulations, higher DNA/lipid ratios (1:40) produced smaller particles (136 nm vs. 188 nm) with improved cellular uptake (77% vs. 50%). The two-step method with higher DNA/PEI ratios improved transfection efficiency, with LNP-Luc/PEI 1:3 (40) achieving ~1.9 × 106 relative light units (RLU) in luciferase expression. In green fluorescent protein (GFP) studies, LNP-GFP/PEI 1:3 (40) showed ~23.8% GFP-positive cells, nearly twofold higher than LNP-GFP (40) at ~12.6%. Conclusions: These results demonstrate the capability of microfluidic-prepared DNA-PEI-LNPs to improve DNA delivery and transgene expression through optimized formulation strategies and selection of appropriate preparation methods.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (M.H.-K.); (A.W.); (K.E.B.)
| | - Anthony Wignall
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (M.H.-K.); (A.W.); (K.E.B.)
| | - Zelalem A. Mekonnen
- Viral Immunology Group, Basil Hetzel Institute for Translational Health Research, Adelaide Medical School, University of Adelaide, Woodville South, SA 5011, Australia; (Z.A.M.); (B.G.-B.)
| | - Ben S.-Y. Ung
- Quality Use of Medicines and Pharmacy Research Centre, University of South Australia City East Campus, Frome Rd., Adelaide, SA 5000, Australia;
| | - Bradley Chereda
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia;
| | - Kristen E. Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (M.H.-K.); (A.W.); (K.E.B.)
| | - Branka Grubor-Bauk
- Viral Immunology Group, Basil Hetzel Institute for Translational Health Research, Adelaide Medical School, University of Adelaide, Woodville South, SA 5011, Australia; (Z.A.M.); (B.G.-B.)
| | - Clive A. Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia; (M.H.-K.); (A.W.); (K.E.B.)
| |
Collapse
|
6
|
Sarkar S, Moitra P, Bera S, Bhattacharya S. Antisense Oligonucleotide Embedded Context Responsive Nanoparticles Derived from Synthetic Ionizable Lipids for lncRNA Targeted Therapy of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45871-45887. [PMID: 39163516 DOI: 10.1021/acsami.4c04893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The long noncoding RNAs (lncRNA) are primarily associated with several essential gene regulations but are also connected to cancer metabolism and progression. HOTAIR and MALAT1 are two such lncRNAs that are detected in malignancies of various origins and are responsible for the poor prognosis of cancer patients. Due to these factors, the lncRNAs have emerged as prime targets for the development of anticancer therapeutics. However, nonviral delivery of lncRNA-targeted antisense oligonucleotides (ASOs) still remains a critical challenge while maintaining their structural and functional integrity. Herein, we have designed and synthesized a new series of ionizable lipids with variations in their head groups to prepare lipid nanoparticle (LNP) formulation along with cholesterol-based twin cationic lipid and amphiphilic zwitterionic lipid. The context responsiveness of these formulations in delivering the ASOs has been thoroughly investigated by various bioanalytical techniques, and an optimum formulation has been identified. The LNPs are utilized to deliver the ASOs targeting HOTAIR lncRNA in human cancer cell lines and MALAT1 lncRNA in mouse models. This study thus standardizes an advanced nanomaterial system for nonviral gene delivery that has been validated by a considerable reduction in the target lncRNA level under in vitro and a significant reduction in tumor volume under in vivo settings.
Collapse
Affiliation(s)
- Sourav Sarkar
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur (IISER Berhampur), Berhampur, Odisha 760003, India
| | - Sayan Bera
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati (IISER Tirupati), Srinivasapuram, Yerpedu Mandal, Tirupati District, Andhra Pradesh 517619, India
| |
Collapse
|
7
|
Pereira LFT, Tredus JGR, Corá LO, Novacki LL, Oliveira GED, Vodiani M, Dias IP, Filho RXV, Picheth GF. Advanced biopolymeric materials and nanosystems for RNA/DNA vaccines: a review. Nanomedicine (Lond) 2024; 19:2027-2043. [PMID: 39110059 PMCID: PMC11485706 DOI: 10.1080/17435889.2024.2382077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 10/09/2024] Open
Abstract
The post COVID-19 pandemic era has emerged with more efficient vaccines, all based on genetic materials. However, to expand the use of nucleic components as vaccines, a new generation of nanosystems particularly constructed to increase RNA/DNA stability, half-life and facilitate administration are still required. This review highlights novel developments in mRNA and pDNA vaccines formulated into nanostructures exclusively composed by biopolymeric materials. Recent advances suggest that a new generation of vaccines may arise by adapting the structural features of biopolymers with the effectiveness of nucleic acids. The advantages offered by biopolymers, such as increased stability and targeting ability may cause a revolution in the immunization field for offering promptly adaptable and effective formulations for worldwide distribution.
Collapse
Affiliation(s)
- Luis F T Pereira
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - João G R Tredus
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Larissa O Corá
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - Luisa L Novacki
- School of Medicine, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Mariana Vodiani
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Isabela P Dias
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Rafael X V Filho
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F Picheth
- School of Medicine, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
- Department of Biochemistry, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
8
|
Mashal M, Attia N, Maldonado I, Enríquez Rodríguez L, Gallego I, Puras G, Pedraz JL. Comparative analysis of lipid-peptide nanoparticles prepared via microfluidics, reverse phase evaporation, and ouzo techniques for efficient plasmid DNA delivery. Eur J Pharm Biopharm 2024; 201:114385. [PMID: 38945408 DOI: 10.1016/j.ejpb.2024.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
In the current "era of lipid carriers," numerous strategies have been developed to manufacture lipid nanoparticles (LNPs). Nevertheless, the potential impact of various preparation methods on the characteristics, use, and/or stability of these LNPs remains unclear. In this work, we attempted to compare the effects of three different preparation methods: microfluidics (MF), reverse phase evaporation (RV), and ouzo (OZ) on lipid-peptide NPs (LPNPs) as plasmid DNA delivery carriers. These LPNPs had the same components, namely DOTMA cationic lipid, DSPC, cholesterol, and protamine. Subsequently, we compared the LPNPs in terms of their physicochemical features, functionality as gene delivery vehicles in two distinct cell lines (NT2 and D1-MSCs), and finally, their storage stability over a six-month period. It was clear that all three LPNP formulations worked to deliver EGFP-pDNA while keeping cells alive, and their physicochemical stability was high for 6 months. However, the preparation technique had a significant impact on their physicochemical characteristics. The MF produced LPNPs with a lesser size, polydispersity index, and zeta potential than the other synthesis methods. Additionally, their DNA entrapment efficiency, cell viability, and functional stability profiles were generally superior. These findings provide new insights for comparing different manufacturing methods to create LPNPs with the desired characteristics for effective and safe gene delivery.
Collapse
Affiliation(s)
- Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Histology and Cell Biology Department. Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Iván Maldonado
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Lucía Enríquez Rodríguez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
9
|
Vlasova KY, Kerr A, Pennock ND, Jozic A, Sahel DK, Gautam M, Murthy NTV, Roberts A, Ali MW, MacDonald KD, Walker J, Luxenhofer R, Sahay G. Synthesis of ionizable lipopolymers using split-Ugi reaction for pulmonary delivery of various size RNAs and gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598497. [PMID: 38915714 PMCID: PMC11195133 DOI: 10.1101/2024.06.11.598497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We present an efficient approach for synthesizing cationic poly(ethylene imine) derivatives using the multicomponent split-Ugi reaction to rapidly create a library of complex functional ionizable lipopolymers. We synthesized a diverse library of 155 polymers, formulated them into polyplexes to establish structure-activity relationships crucial for endosomal escape and efficient transfection. After discovering a lead structure, lipopolymer-lipid hybrid nanoparticles are introduced to preferentially deliver to and elicit effective mRNA transfection in lung endothelium and immune cells, including T cells with low in vivo toxicity. The lipopolymer-lipid hybrid nanoparticles showed 300-fold improvement in systemic mRNA delivery to the lung compared to in vivo -JetPEI ® . Lipopolymer-lipid hybrid nanoparticles demonstrated efficient delivery of mRNA-based therapeutics for treatment of two different disease models. Lewis Lung cancer progression was significantly delayed after treatment with loaded IL-12 mRNA in U155@lipids after repeated i.v. administration. Systemic delivery of human CFTR (hCFTR) mRNA resulted in production of functional form of CFTR protein in the lungs. The functionality of hCFTR protein was confirmed by restoration of CFTR- mediated chloride secretion in conductive airway epithelia in CFTR knockout mice after nasal instillation of hCFTR mRNA loaded U155@lipids. We further showed that, U155@lipids nanoparticles can deliver complex CRISPR-Cas9 based RNA cargo to the lung, achieving 5.6 ± 2.4 % gene editing in lung tissue. Moreover, we demonstrated successful PD-1 gene knockout of T cells in vivo . Our results highlight a versatile delivery platform for systemic delivering of mRNA of various sizes for gene therapy for a variety of therapeutics.
Collapse
|
10
|
Maeki M, Kimura N, Okada Y, Shimizu K, Shibata K, Miyazaki Y, Ishida A, Yonezawa K, Shimizu N, Shinoda W, Tokeshi M. Understanding the effects of ethanol on the liposome bilayer structure using microfluidic-based time-resolved small-angle X-ray scattering and molecular dynamics simulations. NANOSCALE ADVANCES 2024; 6:2166-2176. [PMID: 38633055 PMCID: PMC11019499 DOI: 10.1039/d3na01073b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Lipid nanoparticles (LNPs) are essential carrier particles in drug delivery systems, particularly in ribonucleic acid delivery. In preparing lipid-based nanoparticles, microfluidic-based ethanol injection may produce precisely size-controlled nanoparticles. Ethanol is critical in LNP formation and post-treatment processes and affects liposome size, structure, lamellarity, and drug-loading efficiency. However, the effects of time-dependent changes in the ethanol concentration on the structural dynamics of liposomes are not clearly understood. Herein, we investigated ethanol-induced lipid bilayer changes in liposomes on a time scale from microseconds to tens of seconds using a microfluidic-based small-angle X-ray scattering (SAXS) measurement system coupled with molecular dynamics (MD) simulations. The time-resolved SAXS measurement system revealed that single unilamellar liposomes were converted to multilamellar liposomes within 0.8 s of contact with ethanol, and the d-spacing was decreased from 6.1 (w/o ethanol) to 4.4 nm (80% ethanol) with increasing ethanol concentration. We conducted 1 μs MD simulations to understand the molecular-level structural changes in the liposomes. The MD simulations revealed that the changes in the lamellar structure caused by ethanol at the molecular level could explain the structural changes in the liposomes observed via time-resolved SAXS. Therefore, the post-treatment process to remove residual ethanol is critical in liposome formation.
Collapse
Affiliation(s)
- Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6773 +81-11-706-6744
- JST PRESTO 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) Tsukuba Ibaraki 305-0801 Japan
| | - Niko Kimura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Yuto Okada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Kazuki Shimizu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan
| | - Kana Shibata
- Department of Materials Chemistry, Nagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University Okayama 700-8530 Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6773 +81-11-706-6744
| | - Kento Yonezawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) Tsukuba Ibaraki 305-0801 Japan
| | - Nobutaka Shimizu
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) Tsukuba Ibaraki 305-0801 Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University Okayama 700-8530 Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13 Nishi 8, Kita-ku Sapporo 060-8628 Japan +81-11-706-6745 +81-11-706-6773 +81-11-706-6744
| |
Collapse
|