1
|
Sankaran KJ, Hoang DQ, Kunuku S, Korneychuk S, Turner S, Pobedinskas P, Drijkoningen S, Van Bael MK, D' Haen J, Verbeeck J, Leou KC, Lin IN, Haenen K. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures. Sci Rep 2016; 6:29444. [PMID: 27404130 PMCID: PMC4941520 DOI: 10.1038/srep29444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/13/2016] [Indexed: 01/31/2023] Open
Abstract
Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.
Collapse
Affiliation(s)
| | - Duc Quang Hoang
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.,IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Srinivasu Kunuku
- Department of Engineering and System Science, National Tsing Hua University, 30013 Hsinchu, Taiwan
| | - Svetlana Korneychuk
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Stuart Turner
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Paulius Pobedinskas
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.,IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Sien Drijkoningen
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.,IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Marlies K Van Bael
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.,IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Jan D' Haen
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.,IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| | - Johan Verbeeck
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, 2020 Antwerp, Belgium
| | - Keh-Chyang Leou
- Department of Engineering and System Science, National Tsing Hua University, 30013 Hsinchu, Taiwan
| | - I-Nan Lin
- Department of Physics, Tamkang University, 251 Tamsui, Taiwan
| | - Ken Haenen
- Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium.,IMOMEC, IMEC vzw, 3590 Diepenbeek, Belgium
| |
Collapse
|
2
|
Sankaran KJ, Huang BR, Saravanan A, Manoharan D, Tai NH, Lin IN. Heterogranular-Structured Diamond-Gold Nanohybrids: A New Long-Life Electronic Display Cathode. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27078-27086. [PMID: 26600002 DOI: 10.1021/acsami.5b10569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the age of hand-held portable electronics, the need for robust, stable and long-life cathode materials has become increasingly important. Herein, a novel heterogranular-structured diamond-gold nanohybrids (HDG) as a long-term stable cathode material for field-emission (FE) display and plasma display devices is experimentally demonstrated. These hybrid materials are electrically conductive that perform as an excellent field emitters, viz. low turn-on field of 2.62 V/μm with high FE current density of 4.57 mA/cm(2) (corresponding to a applied field of 6.43 V/μm) and prominently high lifetime stability lasting for 1092 min revealing their superiority on comparison with the other commonly used field emitters such as carbon nanotubes, graphene, and zinc oxide nanorods. The process of fabrication of these HDG materials is direct and easy thereby paving way for the advancement in next generation cathode materials for high-brightness FE and plasma-based display devices.
Collapse
Affiliation(s)
- Kamatchi Jothiramalingam Sankaran
- Department of Materials Science and Engineering, National Tsing Hua University , Hsinchu 300, Taiwan, R.O.C
- Institute for Materials Research (IMO), Hasselt University , 3590 Diepenbeek, Belgium
| | - Bohr-Ran Huang
- Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology , Taipei 106, Taiwan, R.O.C
| | - Adhimoorthy Saravanan
- Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology , Taipei 106, Taiwan, R.O.C
| | - Divinah Manoharan
- Department of Physics, Tamkang University , Tamsui 251, Taiwan, R.O.C
| | - Nyan-Hwa Tai
- Department of Materials Science and Engineering, National Tsing Hua University , Hsinchu 300, Taiwan, R.O.C
| | - I-Nan Lin
- Department of Physics, Tamkang University , Tamsui 251, Taiwan, R.O.C
| |
Collapse
|