1
|
Ihnatsyeu-Kachan A, Sharko O, Bekish A, Saichuk A, Zhogla V, Abashkin V, Ulashchik E, Shcharbin D, Le Goff W, Kontush A, Guillas I, Shmanai V, Kim S. High-density lipoprotein-like nanoparticles with cationic cholesterol derivatives for siRNA delivery. BIOMATERIALS ADVANCES 2025; 170:214202. [PMID: 39923604 DOI: 10.1016/j.bioadv.2025.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
A new approach to siRNA delivery using high-density lipoprotein-like nanoparticles (HDL NPs) was investigated, incorporating oligoamine and cholesterol-derived cationic lipids (CLs) to associate siRNA with the carrier. Newly designed or commercially available compounds, including GL67 and 3-β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Cholesterol), were tested for siRNA binding, cytotoxicity, and siRNA cellular uptake. GL67 emerged as the most promising CL for siRNA delivery via HDL NPs. While it contributed to substantial siRNA uptake and cytosolic delivery in HepG2 cells, gene silencing remained limited, indicating a need for further optimization. Despite this, the study highlights the potential of positively charged cholesterol derivatives for siRNA delivery using HDL NPs. An analysis of the relationship between CL head group structure and HDL NPs' siRNA binding efficiency and cytotoxicity showed that factors such as oligoamine molecule conjugation site, linker type, amine group ethylation, and alkyl chain length between amine groups are crucial for optimizing CL design. Furthermore, the phospholipid environment surrounding CLs significantly influences HDL NPs' performance, particularly in siRNA cellular uptake. The study also revealed that intracellular siRNA trafficking varies by cell type, emphasizing the importance of customizing HDL NP formulations for specific cells. These insights are important for designing more effective HDL NPs for siRNA therapeutic delivery.
Collapse
Affiliation(s)
- Aliaksei Ihnatsyeu-Kachan
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02841, Republic of Korea; Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Olga Sharko
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Andrei Bekish
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Anastasiia Saichuk
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 27 Academicheskaya Str., Minsk, 220072, Belarus
| | - Wilfried Le Goff
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Anatol Kontush
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Isabelle Guillas
- Sorbonne Université, INSERM, Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), UMR_S1166, 91 Boulevard de l'Hôpital, Paris, 75013, France
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Str., Minsk, 220072, Belarus
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02841, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Bian X, Yu X, Lu S, Jia L, Li P, Yin J, Tan S. Chitosan-based nanoarchitectures for siRNA delivery in cancer therapy: A review of pre-clinical and clinical importance. Int J Biol Macromol 2025; 284:137708. [PMID: 39571854 DOI: 10.1016/j.ijbiomac.2024.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The gene therapy has been developed into a new cancer treatment option. Now that we know which molecular components contribute to carcinogenesis, we may use gene therapy to target particular signalling pathways in cancer treatment. Problems with gene therapy include genetic tool degradation in blood, off-targeting features, and inadequate tumor site accumulation; new delivery mechanisms are needed to address these issues. A polysaccharide made from chitin, chitosan has found extensive use in the creation of nanoparticles. The delivery of genes in the treatment of illnesses, particularly cancer, has made use of nanostructures modified with chitosan. Topics covered in this review center on cancer treatment using chitosan-based polymers for siRNA delivery. This study aims to assess the potential of chitosan nanoparticles for the simultaneous administration of siRNA and anti-cancer medications. In cancer treatment, these nanoparticles can transport phytochemicals or chemotherapeutics together with siRNA. In addition, chitosan nanoparticles loaded with siRNA can inhibit the growth and spread of human malignancies by delivering siRNA that targets particular genes. Chitosan nanoparticles loaded with siRNA can heighten the responsiveness of cancer cells. Future therapeutic applications of chitosan nanoparticles may open the path for cancer treatment, thanks to their biocompatibility and biosafety.
Collapse
Affiliation(s)
- Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Han J, Dong H, Zhu T, Wei Q, Wang Y, Wang Y, Lv Y, Mu H, Huang S, Zeng K, Xu J, Ding J. Biochemical hallmarks-targeting antineoplastic nanotherapeutics. Bioact Mater 2024; 36:427-454. [PMID: 39044728 PMCID: PMC11263727 DOI: 10.1016/j.bioactmat.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 07/25/2024] Open
Abstract
Tumor microenvironments (TMEs) have received increasing attention in recent years as they play pivotal roles in tumorigenesis, progression, metastases, and resistance to the traditional modalities of cancer therapy like chemotherapy. With the rapid development of nanotechnology, effective antineoplastic nanotherapeutics targeting the aberrant hallmarks of TMEs have been proposed. The appropriate design and fabrication endow nanomedicines with the abilities for active targeting, TMEs-responsiveness, and optimization of physicochemical properties of tumors, thereby overcoming transport barriers and significantly improving antineoplastic therapeutic benefits. This review begins with the origins and characteristics of TMEs and discusses the latest strategies for modulating the TMEs by focusing on the regulation of biochemical microenvironments, such as tumor acidosis, hypoxia, and dysregulated metabolism. Finally, this review summarizes the challenges in the development of smart anti-cancer nanotherapeutics for TME modulation and examines the promising strategies for combination therapies with traditional treatments for further clinical translation.
Collapse
Affiliation(s)
- Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - He Dong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Ke Zeng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, 100 Haining Street, Shanghai, 200080, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
5
|
Meng D, Guo L, Shi D, Sun X, Shang M, Xiao S, Zhou X, Zhao Y, Wang X, Li J. Dual-sensitive and highly biocompatible O-carboxymethyl chitosan nanodroplets for prostate tumor ultrasonic imaging and treatment. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
Abstract
AbstractNanosized drug delivery systems have rapidly emerged as a promising approach to tumor therapy, which still have many challenges in clinical application. In this study, doxorubicin-loaded O-carboxymethyl chitosan/perfluorohexane nanodroplets (O-CS-DOX NDs) were synthesized and functionally tested as an effective drug delivery system in vitro and in vivo. O-CS-DOX NDs with small size (159.6 nm) and good doxorubicin encapsuling ability showed pH- and ultrasound-dependent drug release profile and satisfying ultrasound imaging performance. With high biocompatibility and biosafety, these nanodroplets could accumulate in the tumor sites and exhibit high efficiency in inhibiting tumor growth with ultrasound irradiation. These stable, safe and smart O-CS-DOX NDs showed promising potential as a smart dual-responsive bomb for tumor ultrasonic imaging and treatment.
Collapse
|
6
|
|
7
|
Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics 2021; 13:pharmaceutics13040587. [PMID: 33924046 PMCID: PMC8073149 DOI: 10.3390/pharmaceutics13040587] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized.
Collapse
|
8
|
Spanedda MV, Bourel-Bonnet L. Cyclic Anhydrides as Powerful Tools for Bioconjugation and Smart Delivery. Bioconjug Chem 2021; 32:482-496. [PMID: 33662203 DOI: 10.1021/acs.bioconjchem.1c00023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic anhydrides are potent tools for bioconjugation; therefore, they are broadly used in the functionalization of biomolecules and carriers. The pH-dependent stability and reactivity, as well as the physical properties, can be tuned by the structure of the cyclic anhydride used; thus, their application in smart delivery systems has become very important. This review intends to cover the last updates in the use of cyclic anhydrides as pH-sensitive linkers, their differences in reactivity, and the latest applications found in bioconjugation chemistry or chemical biology, and when possible, in drug delivery.
Collapse
Affiliation(s)
- Maria Vittoria Spanedda
- Laboratoire de Conception et Application de Molécules Bioactives, 3Bio team, ITI InnoVec, UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| | - Line Bourel-Bonnet
- Laboratoire de Conception et Application de Molécules Bioactives, 3Bio team, ITI InnoVec, UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401 Illkirch Cedex, France
| |
Collapse
|
9
|
Ashrafizadeh M, Delfi M, Hashemi F, Zabolian A, Saleki H, Bagherian M, Azami N, Farahani MV, Sharifzadeh SO, Hamzehlou S, Hushmandi K, Makvandi P, Zarrabi A, Hamblin MR, Varma RS. Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260:117809. [PMID: 33712155 DOI: 10.1016/j.carbpol.2021.117809] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging and promising strategy in cancer therapy where small interfering RNA (siRNA) system has been deployed for down-regulation of targeted gene and subsequent inhibition in cancer progression; some issues with siRNA, however, linger namely, its off-targeting property and degradation by enzymes. Nanoparticles can be applied for the encapsulation of siRNA thus enhancing its efficacy in gene silencing where chitosan (CS), a linear alkaline polysaccharide derived from chitin, with superb properties such as biodegradability, biocompatibility, stability and solubility, can play a vital role. Herein, the potential of CS nanoparticles has been discussed for the delivery of siRNA in cancer therapy; proliferation, metastasis and chemoresistance are suppressed by siRNA-loaded CS nanoparticles, especially the usage of pH-sensitive CS nanoparticles. CS nanoparticles can provide a platform for the co-delivery of siRNA and anti-tumor agents with their enhanced stability via chemical modifications. As pre-clinical experiments are in agreement with potential of CS-based nanoparticles for siRNA delivery, and these carriers possess biocompatibiliy and are safe, further studies can focus on evaluating their utilization in cancer patients.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Naples, Italy
| | - Farid Hashemi
- PhD Student of Pharmacology, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morteza Bagherian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Soodeh Hamzehlou
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, Pontedera 56025, Pisa, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
10
|
Zha J, Mao X, Hu S, Shang K, Yin J. Acid- and Thiol-Cleavable Multifunctional Codelivery Hydrogel: Fabrication and Investigation of Antimicrobial and Anticancer Properties. ACS APPLIED BIO MATERIALS 2021; 4:1515-1523. [PMID: 35014501 DOI: 10.1021/acsabm.0c01396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogels serving as a drug carrier was realized by entrapping small-sized drug molecules within their cross-linked interstitial networks. After covering the targeted location, hydrogels interact with the physiological fluids and swell, resulting in an increased interspace between networks for the outside diffusion of drugs. However, inevitable in vivo inflammatory responses or bacterial infection on the implant materials and persistent cargo release are still challenging. Herein, we report the fabrication of dual-responsive hydrogels based on acid-sensitive poly(ethylenimine) (PEI) derivative (PEI(-COOH/-vinyl)), thiol-responsive camptothecin prodrug monomer (CPTM), and hydrophilic oligo(ethylene glycol) methyl ether acrylate (OEGMA) by a conventional radical polymerization. Curcumin was then solubilized into the hydrogels to endow them with antimicrobial and cancer resistance properties. The in vitro experiments exhibited sustained hydrogel dissolution and CPT release in a simulated physiological environment. The antimicrobial and cytotoxicity tests of drug-loaded hydrogels using methicillin-resistant Staphylococcus aureus (MRSA) strains and HeLa cancer cell lines, respectively, indicated that the hydrogels possessed efficient antimicrobial effects and could successfully inhibit the growth of cancer cells.
Collapse
Affiliation(s)
- Jiecheng Zha
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Xiaoxu Mao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Shoukui Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Ke Shang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
11
|
Liang Y, Wang Y, Wang L, Liang Z, Li D, Xu X, Chen Y, Yang X, Zhang H, Niu H. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact Mater 2021; 6:433-446. [PMID: 32995671 PMCID: PMC7490593 DOI: 10.1016/j.bioactmat.2020.08.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is one of the concerning malignancies worldwide, which is lacking effective targeted therapy. Gene therapy is a potential approach for bladder cancer treatment. While, a safe and effective targeted gene delivery system is urgently needed for prompting the bladder cancer treatment in vivo. In this study, we confirmed that the bladder cancer had CD44 overexpression and small interfering RNAs (siRNA) with high interfere to Bcl2 oncogene were designed and screened. Then hyaluronic acid dialdehyde (HAD) was prepared in an ethanol-water mixture and covalently conjugated to the chitosan nanoparticles (CS-HAD NPs) to achieve CD44 targeted siRNA delivery. The in vitro and in vivo evaluations indicated that the siRNA-loaded CS-HAD NPs (siRNA@CS-HAD NPs) were approximately 100 nm in size, with improved stability, high siRNA encapsulation efficiency and low cytotoxicity. CS-HAD NPs could target to CD44 receptor and deliver the therapeutic siRNA into T24 bladder cancer cells through a ligand-receptor-mediated targeting mechanism and had a specific accumulation capacity in vivo to interfere the targeted oncogene Bcl2 in bladder cancer. Overall, a CD44 targeted gene delivery system based on natural macromolecules was developed for effective bladder cancer treatment, which could be more conducive to clinical application due to its simple preparation and high biological safety.
Collapse
Affiliation(s)
- Ye Liang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Yonghua Wang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Liping Wang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhijuan Liang
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Dan Li
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiaoyu Xu
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Yuanbin Chen
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xuecheng Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Haitao Niu
- Key Laboratory of Urology and Andrology, Medical Research Centre, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
12
|
Rahman M, Almalki WH, Alrobaian M, Iqbal J, Alghamdi S, Alharbi KS, Alruwaili NK, Hafeez A, Shaharyar A, Singh T, Waris M, Kumar V, Beg S. Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opin Drug Deliv 2021; 18:489-513. [PMID: 33225771 DOI: 10.1080/17425247.2021.1854223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cancer has always been a menace for the society. Hepatocellular carcinoma (HCC) is one of the most lethal and 3rdlargest causes of deaths around the world.Area covered: The emergence of natural actives is considered as the greatest boon for fighting cancer. The natural actives take precedence over the traditional chemotherapeutic drugs in terms of their multi-target, multi-level and coordinated effects in the treatment of HCC. Literature reports have indicated the tremendous potential of bioactive natural products in inhibiting the HCC via molecular drug targeting, augmented bioavailability, and the ability for both passive or active targeting and stimulus-responsive drug release characteristics. This review provides a newer treatment approaches involved in the mechanism of action of different natural actives used for the HCC treatment via different molecular pathways. Besides, the promising advantage of natural bioactive-loaded nanocarriers in HCC treatment has also been also presented in this review. Expert opinion: The remarkable outcomes have been observed with therapeutic efficacy of the nanocarriers of natural actives in the treatment of HCC.Furthermore, it requires a thorough assessment of the safety and efficacy evaluation of the nanocarriers for the delivery of targeted natural active ingredients in HCC.].
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-qura University, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi-110025
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Adil Shaharyar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tanuja Singh
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Mohammad Waris
- Department of Botany, T.P.S College, Patna, Bihar, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Nanomedicine Research Lab, Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Zhang J, Jing N, Fan X, Tang X. Photoregulation of Gene Expression with Amantadine‐Modified Caged siRNAs through Host–Guest Interactions. Chemistry 2020; 26:14002-14010. [DOI: 10.1002/chem.202003084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinhao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University No. 38 Xueyuan Rd. 100191 Beijing P.R. China
| |
Collapse
|
14
|
Wang Z, Liang Y, Liu Y, Xia H, Liu J, Jin X, Li Z. The pH-triggered polyglutamate brush co-delivery of MDR1 and survivin-targeting siRNAs efficiently overcomes multi-drug resistance of NSCLC. Drug Dev Ind Pharm 2020; 46:1862-1872. [PMID: 32924641 DOI: 10.1080/03639045.2020.1822860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multi-drug resistance (MDR) is one of the major challenges in the successful chemotherapy of non-small cell lung cancer (NSCLC). Although RNA interference (RNAi) has been widely used to silence resistance-related genes, the effect remains unsatisfactory. In this study, we attempted to overcome MDR of NSCLC by simultaneously interfering with two RNAs that have different functions. A new pH-triggered polyglutamate brush polymer dimethylmaleic anhydride-poly(ethyleneglycol) monomethyl ether-b-polyglutamate-g-spermine (DMA-mPEG-b-PG-g-spermine, DPPGS) was designed and synthesized. The DPPGS/small interfering RNA (siRNA) complex nanoparticles (DPPGSN) were prepared. The results demonstrated that DPPGSN could be transformed from a negatively charged form into a positively charged form in the slightly acidic tumor extracellular environment. The siRNA targeting MDR1 mRNA (siMDR1) and siRNA targeting survivin mRNA (siSurvivin) could be efficiently co-delivered by DPPGS to simultaneously interfere with two genes (p < 0.01). Furthermore, DPPGS co-delivery of siMDR1 and siSurvivin lowered the IC50 value of cisplatin (DDP) in A549/DDP (p < 0.01) cells and increased the apoptosis rate of the cells (p < 0.01). Therefore, co-delivery of siMDR1 and siSurvivin using DPPGS would be a promising approach for overcoming MDR of NSCLC.
Collapse
Affiliation(s)
- Zhongjuan Wang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, PR China
| | - Yueqin Liang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, PR China
| | - Yanqiu Liu
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, PR China
| | - Hongying Xia
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, PR China
| | - Jianqi Liu
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, PR China
| | - Xingfang Jin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, PR China
| | - Zhongkun Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, PR China
| |
Collapse
|
15
|
Zhang X, Fan J, Lee CS, Kim S, Chen C, Aghaloo T, Lee M. Apatite-binding nanoparticulate agonist of hedgehog signaling for bone repair. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909218. [PMID: 32952492 PMCID: PMC7494204 DOI: 10.1002/adfm.201909218] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 05/11/2023]
Abstract
The hedgehog signaling pathway plays a critical role in bone development and regeneration. Applications of hedgehog morphogens or small molecular agonists are of interest in bone repair but constrained by low stability, high dose requirement, and nonspecific targeting in vivo. Herein, a nanoparticulate agonist as a new type of hedgehog signaling activator is developed for efficacious bone healing. The shell of nanoparticulate agonist consists of palmitic acid and oxysterol, which could modify hedgehog function and bind with the smoothened receptor to positively modulate hedgehog signaling. Meanwhile, the core is assembled with sonic hedgehog gene/polyethyleneimine complex, which could synergistically enhance hedgehog signaling with oxysterol constituents. Moreover, alendronate is introduced into nanoparticulate agonist to bind with hydroxyapatite for potential bone tissue targeting. Lastly, the nanoparticulate agonist surface is decorated with the guanidine group to overcome cell membrane barriers. The created multifunctional nanoparticulate agonist is successfully integrated onto apatite-coated three-dimensional scaffolds and demonstrates greatly improved osteogenesis in vitro and calvarial bone healing. This work suggests a novel biomaterial design to specifically promote hedgehog signaling for the treatment of bone defects.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Soyon Kim
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Min Lee
- Division of Advanced Prosthodontics, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, California 90095, United States; Department of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T. Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydr Polym 2020; 238:116126. [PMID: 32299572 DOI: 10.1016/j.carbpol.2020.116126] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Polyelectrolyte complexes (PECs) as safe drug delivery carriers, are spontaneously formed by mixing the oppositely charged polyelectrolyte solutions in water without using organic solvents nor chemical cross-linker or surfactant. Intensifying attentions on the PECs study are aroused in academia and industry since the fabrication process of PECs is mild and they are ideal vectors for the delivery of susceptible drugs and macromolecules. Chitosan as the unique natural cationic polysaccharide, is a good bioadhesive material. Besides, due to its excellent biocompatibility, biodegradability, abundant availability and hydrophilic nature, chitosan-based PECs have been extensively applied for drug delivery, particularly after administration through mucosal and parenteral routes. The purpose of this review is to compile the recent advances on the biomedical applications of chitosan-based PECs, with specific focuses on the mucosal delivery, cancer therapy, gene delivery and anti-HIV therapy. The challenges and the perspectives of the chitosan-based PECs are briefly commented as well.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xueling Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shumin Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Thierry Delair
- Ingénierie des Matériaux Polymères, UMR CNRS 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Bd. André Latarjet, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
17
|
Chai M, Gao Y, Liu J, Deng Y, Hu D, Jin Q, Ji J. Polymyxin B-Polysaccharide Polyion Nanocomplex with Improved Biocompatibility and Unaffected Antibacterial Activity for Acute Lung Infection Management. Adv Healthc Mater 2020; 9:e1901542. [PMID: 31898875 DOI: 10.1002/adhm.201901542] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The decade-old antibiotic, polymyxin B (PMB), is regarded as the last line defense against gram-negative "superbug." However, the serious nephrotoxicity and neurotoxicity strongly obstruct further application of this highly effective antibiotic. Herein, a charge switchable polyion nanocomplex exhibiting pH-sensitive property is proposed to deliver PMB which is expected to improve the biosafety of PMB on the premise of retaining excellent antibacterial activity. The polyion nanocomplex is prepared through electrostatic interaction of positively charged PMB and negatively charged 2,3-dimethyl maleic anhydride (DA) grafted chitoligosaccharide (CS). The negative charge of CS-DA will convert to positive due to the hydrolysis of amide bonds in acidic infectious environment, leading to the disassembly of CS-DA/PMB nanocomplex and release of PMB. CS-DA/PMB nanocomplex does not show significant toxicity to mammalian cells while retaining excellent bactericidal capability equivalent to free PMB. The nephrotoxicity and neurotoxicity of CS-DA/PMB dramatically decrease compared to free PMB. Moreover, CS-DA/PMB nanocomplex exhibits superior bactericidal activity against Pseudomonas aeruginosa in an acute lung infection mouse model. The pH-sensitive polyion nanocomplexes may provide a new way to reduce the side effects of highly toxic antibiotics without reducing their intrinsic antibacterial activity, which is the key factor to achieve extensive in vivo clinical applications.
Collapse
Affiliation(s)
- Mengying Chai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 Zhejiang Province P. R. China
| | - Yifan Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 Zhejiang Province P. R. China
| | - Jun Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 Zhejiang Province P. R. China
| | - Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 Zhejiang Province P. R. China
| | - Dengfeng Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 Zhejiang Province P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 Zhejiang Province P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of EducationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 Zhejiang Province P. R. China
| |
Collapse
|
18
|
Liu Y, Cen Y, Cheng K, Li J, Wu W, Li R, Wu H. Novel biodegradable application of chitosan/lysine compounds for delivery of ligustrazine. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yude Liu
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanyou Cen
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaili Cheng
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarui Li
- First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wu
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Wu
- Department of Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Yang Q, Liu S, Liu X, Liu Z, Xue W, Zhang Y. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater 2019; 96:436-455. [PMID: 31254682 DOI: 10.1016/j.actbio.2019.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
As an effective and well-recognized strategy used in many delivery systems, such as polycation gene vectors, charge reversal refers to the alternation of vector surface charge from negative (in blood circulation) to positive (in the targeted tissue) in response to specific stimuli to simultaneously satisfy the requirements of biocompatibility and targeting. Although charge reversal vectors are intended to avoid interactions with blood in their application, no overall or systematic investigation has been carried out to verify the role of charge reversal in the blood compatibility. Herein, we comprehensively mapped the effects of a typical charge-reversible polycation gene vector based on pH-responsive 2,3-dimethylmaleic anhydride (DMMA)-modified polyethylenimine (PEI)/pDNA complex in terms of blood components, coagulation function, and immune response as compared to conventional PEGylated modification. The in vitro and in vivo results displayed that charge-reversal modification significantly improves the PEI/pDNA-induced abnormal effect on vascular endothelial cells, platelet activation, clotting factor activity, fibrinogen polymerization, blood coagulation process, and pro-inflammatory cytokine expression. Unexpectedly, (PEI/pDNA)-DMMA induced the cytoskeleton impairment-mediated erythrocyte morphological alternation and complement activation even more than PEI/pDNA. Further, transcriptome sequencing demonstrated that the overexpression of pro-inflammatory cytokines was correlated with vector-induced differentially expressed gene number and mediated by inflammation-related signaling pathways (MAPK, NF-κB, Toll-like receptor, and JAK-STAT) activation. By comparison, charge-reversal modification improved the hemocompatibility to a greater extent than dose PEGylation except for erythrocyte rupture. Nevertheless, it is inferior to mPEG modification in terms of immunocompatibility. These findings provide comprehensive insights to understand the molecular mechanisms of the effects of charge reversal on blood components and their function and to provide valuable information for its potential applications from laboratory to clinic. STATEMENT OF SIGNIFICANCE: The seemingly revolutionary charge reversal strategy has been believed to possess stealth character with negative charge eluding interaction with blood components during circulation. However to date, no overall or systematic investigation has been carried out to verify the role of charge-reversal on the blood/immune compatibility, which impede their development from laboratory to bedside. Therefore, we comprehensively mapped the effects of a typical charge-reversible polycationic gene vector on blood components (vascular endothelial cell, platelet, clotting factors, fibrinogen, RBCs and coagulation function) and immune response (complement and pro-inflammatory cytokines) at cellular and molecular level in comparison to PEGylation modification. These findings help to elucidate the molecular mechanisms for the effects of charge-reversal on blood components and functions, and provide valuable information for the possible application in clinical settings.
Collapse
Affiliation(s)
- Qi Yang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shuo Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wei Xue
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yi Zhang
- Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
20
|
Zhang W, Xu W, Lan Y, He X, Liu K, Liang Y. Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer. Int J Nanomedicine 2019; 14:5287-5301. [PMID: 31406460 PMCID: PMC6642624 DOI: 10.2147/ijn.s203113] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: Nanoparticle (NP)-mediated targeted delivery of therapeutic genes or siRNAs to tumors has potential advantages. In this study, hyaluronic acid (HA)-modified chitosan nanoparticles (CS NPs-HA) loaded with cyanine 3 (Cy3)-labeled siRNA (sCS NPs-HA) were prepared and characterized. Methods: Human non-small cell lung cancer (NSCLC) A549 cells expressing receptor CD44 and tumor-bearing mice were used to evaluate the cytotoxic and antitumor effects of sCS NPs-HA in vitro and in vivo. Results: The results showed that noncytotoxic CS NPs-HA of small size (100-200 nm) effectively delivered the Cy3-labeled siRNA to A549 cells via receptor CD44 and inhibited cell proliferation by downregulating the target gene BCL2. In vivo experiment results revealed that sCS NPs-HA directly delivered greater amounts of Cy3-labeled siRNA to the tumor sites, resulting in the inhibition of tumor growth by downregulating BCL2, as compared to unmodified NPs loaded with siRNA (sCS NPs) and to naked Cy3-labeled siRNA. Conclusion: The HA-modified NPs based on chitosan could serve as a promising carrier for siRNA delivery and targeted therapy for NSCLC expressing CD44.
Collapse
Affiliation(s)
- Wenhua Zhang
- Department of Inspection, Medical Faculty, Qingdao University, Qingdao266003, People’s Republic of China
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao266003, People’s Republic of China
| | - Wenhua Xu
- Department of Inspection, Medical Faculty, Qingdao University, Qingdao266003, People’s Republic of China
| | - Yu Lan
- Department of Inspection, Weihai Central Hospital, Weihai264400, People’s Republic of China
| | - Xuliang He
- Department of Inspection, Medical Faculty, Qingdao University, Qingdao266003, People’s Republic of China
| | - Kaibin Liu
- Department of Clinical Medicine, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao266003, People’s Republic of China
| |
Collapse
|
21
|
Meng D, Guo L, Shi D, Sun X, Shang M, Zhou X, Li J. Charge-conversion and ultrasound-responsive O-carboxymethyl chitosan nanodroplets for controlled drug delivery. Nanomedicine (Lond) 2019; 14:2549-2565. [PMID: 31271101 DOI: 10.2217/nnm-2019-0217] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: O-carboxymethyl chitosan/perfluorohexane nanodroplets (O-CS NDs) and doxorubicin-loading O-carboxymethyl chitosan nanodroplets were synthesized and functionally tested as drug delivery system in vitro. Materials & methods: The characteristics, charge conversion, stability, cytotoxicity, ultrasound imaging ability, interaction with tumor cells of the nanodroplets and eradication on tumor cells of the doxorubicin-loaded nanodroplets were investigated. Results: O-CS NDs (below 200 nm) achieved higher tumor cellular associations at acidic pH, with great serum stability, pH-dependent charge conversion and good ultrasound imaging ability. Doxorubicin-loading O-carboxymethyl chitosan nanodroplets exhibited strong cytotoxicity on PC-3 cells with ultrasound exposure. Conclusion: These stable, safe and smart O-CS NDs may be a promising approach to improve cell interaction efficiency as an ultrasound imaging and cancer-targeting drug delivery system.
Collapse
Affiliation(s)
- Dong Meng
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiao Sun
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaoying Zhou
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
22
|
Zhang E, Xing R, Liu S, Qin Y, Li K, Li P. Advances in chitosan-based nanoparticles for oncotherapy. Carbohydr Polym 2019; 222:115004. [PMID: 31320066 DOI: 10.1016/j.carbpol.2019.115004] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023]
Abstract
Chitosan has attracted considerable attention as an anti-tumor drug carrier material in recent years, which is due to its biocompatibility and biodegradability, as well as the simple and mild preparing techniques of drug-loaded nanoparticles. Chitosan-based nanoparticles can deliver various anti-tumor agents to specific tumor tissues by passive and active targeting mechanisms, including traditional chemotherapeutic agents, DNA or siRNA, proteins, photosensitizers and so on. In this review, we summarized the factors affecting the anti-tumor efficacy of chitosan-based nanoparticles, to aid exploring the function-structure relationship. The recent studies on chitosan-based nanoparticles for oncotherapy were highlighted, including their structures, properties and pharmacological effects. Finally, we offered our perspectives on the challenges and future development of this area.
Collapse
Affiliation(s)
- Enhui Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
23
|
Xie D, Du J, Bao M, Zhou A, Tian C, Xue L, Ju C, Shen J, Zhang C. A one-pot modular assembly strategy for triple-play enhanced cytosolic siRNA delivery. Biomater Sci 2019; 7:901-913. [PMID: 30575823 DOI: 10.1039/c8bm01454j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Robust efficiency for cytosolic small interfering RNA (siRNA) delivery is of great importance for effective gene therapy. To significantly improve the cytosolic siRNA delivery, a "one-pot modular assembly" strategy is developed to assemble a triple-play enhanced cytosolic siRNA delivery system via a facile and innocuous copper-free click reaction. Specifically, three modules are prepared including octreotide for receptor-mediated endocytosis, a cell-penetrating peptide (CPP) for cell penetration, and glutamic acid for the charge-reversal property. All three modules with distinct facilitating endocytosis effects are expediently assembled on the surface of the siRNA/liposome complex to fabricate a multifunctional integrated siRNA delivery system (OCA-CC). OCA-CC has been demonstrated to have enhanced cytosolic delivery and superior gene-silencing efficiency in multiple tumor cells due to the combined effects of all the three modules. High levels of survivin-silencing are also achieved by OCA-CC on orthotopic human breast cancer (MCF-7)-bearing mice accompanied by significant tumor inhibition. This research provides a facile strategy to produce safe and tunable siRNA delivery systems for effective gene therapy and to facilitate the development of multifunctional siRNA vectors.
Collapse
Affiliation(s)
- Daping Xie
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang J, Qiao Z, Liu HY, Song J, Yin J. Positively charged helical chain-modified stimuli-responsive nanoassembly capable of targeted drug delivery and photoacoustic imaging-guided chemo-photothermal synergistic therapy. Biomater Sci 2019; 7:2050-2060. [DOI: 10.1039/c9bm00055k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor targeted size-switchable CPT/IR780@H30-PCL-PPI(L−)/PEI(–COOH/FA) nanoassembly with a “pomegranate” construction was designed, which could efficiently expand the penetration depth and accelerate the cell internalization.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Zhu Qiao
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Huan-Ying Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Jun Yin
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering and Biomedical and Environmental Interdisciplinary Research Centre
- Hefei 230009
- P. R. China
| |
Collapse
|
25
|
Chen L, Zheng Y, Feng L, Liu Z, Guo R, Zhang Y. Novel hyaluronic acid coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of doxorubicin. Int J Biol Macromol 2018; 126:254-261. [PMID: 30584933 DOI: 10.1016/j.ijbiomac.2018.12.215] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
The aim of this work was to examine the formation and properties of a novel polyelectrolyte complex of drug carrier system for the delivery of doxorubicin (DOX), which consists of hyaluronic acid (HA) coated hydrophobically modified chitosan (CS). Various batches of polyelectrolyte complexes with the molar ratio of deoxycholic acid (DCA) and chitosan (CS) of 0.1, 0.2, 0.3 were prepared, and were termed as CS-DCA10, CS-DCA20, and CS-DCA30 respectively. The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), nuclear magnetic resonance hydrogen spectrum (1H NMR) and dynamic light scattering (DLS). Particle sizes of synthesized polyelectrolyte complex nanoparticles (PCNs) were found to be in the range of 280-310 nm, larger than those of uncoated nanoparticles (~150 nm). The PCNs have large zeta potentials (about 26 mV) which make them stable and no sizes' change was determined. DOX could be easily incorporated into the PCNs with encapsulation efficiency (56%) and kept a sustained release manner without burst effect when exposed to PBS (pH 7.4) at 37 °C. Overall, these findings confirmed the potential of these PCNs for drug carrier and prolonged and sustained delivery in the bloodstream.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuanyuan Zheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Yuanming Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
26
|
Nie X, Zhang Z, Wang CH, Fan YS, Meng QY, You YZ. Interactions in DNA Condensation: An Important Factor for Improving the Efficacy of Gene Transfection. Bioconjug Chem 2018; 30:284-292. [DOI: 10.1021/acs.bioconjchem.8b00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | | | | | | | - Ye-Zi You
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
27
|
Lou S, Zhao Z, Dezort M, Lohneis T, Zhang C. Multifunctional Nanosystem for Targeted and Controlled Delivery of Multiple Chemotherapeutic Agents for the Treatment of Drug-Resistant Breast Cancer. ACS OMEGA 2018; 3:9210-9219. [PMID: 30197996 PMCID: PMC6120734 DOI: 10.1021/acsomega.8b00949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 05/02/2023]
Abstract
By targeting CD44 receptors, inhibiting multidrug resistance (MDR), controlling drug release, and synergistically inhibiting tumor growth, a multilayered nanosystem was developed to serve as a multifunctional platform for the treatment of drug-resistant breast cancers. The multilayer nanosystem is composed of a poly(lactic-co-glycolic acid) core, a liposome second layer, and a chitosan third layer. The chitosan-multilayered nanoparticles (Ch-MLNPs) can co-deliver three chemotherapeutic agents: doxorubicin (DOX), paclitaxel (PTX), and silybin. The three drugs are released from the multilayered NPs in a controlled and sequential manner upon internalization and localization in the cellular endosomes. The presence of a chitosan layer allows the nanosystem to target a well-characterized MDR breast cancer biomarker, the CD44s receptor. In vitro cytotoxicity study showed that the nanosystem loaded with triple drugs, DOX-PTX-silybin, resulted in better antitumor efficacy than the single-drug or dual-drug nano-formulations. Likely attributed to the MDR-inhibition effect of silybin, the co-delivered DOX and PTX exhibited a better synergistic effect on MDR breast cancer cells than on non-MDR breast cancer cells. The in vivo study also showed that the multilayered nanosystem promoted MDR inhibition and synergy between chemotherapeutic agents, leading to significant tumor reduction in a xenograft animal model. Ch-MLNPs reduced the tumor volume by fivefold compared to that of the control group without causing overt cytotoxicity.
Collapse
Affiliation(s)
- Song Lou
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Zongmin Zhao
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Micah Dezort
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
28
|
Su S, Du FS, Li ZC. Facile Synthesis of a Degradable Poly(ethylene glycol) Platform with Tunable Acid Sensitivity at Physiologically Relevant pH. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shan Su
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Tao B, Shen X, Yuan Z, Ran Q, Shen T, Pei Y, Liu J, He Y, Hu Y, Cai K. N-halamine-based multilayers on titanium substrates for antibacterial application. Colloids Surf B Biointerfaces 2018; 170:382-392. [PMID: 29945050 DOI: 10.1016/j.colsurfb.2018.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 01/23/2023]
Abstract
Bacterial infection is one of the most severe postoperative complications leading to clinical orthopedic implants failure. To improve the antibacterial property of titanium (Ti) substrates, a bioactive coating composed of chitosan-1-(hydroxymethyl)- 5,5-dimethylhydantoin (Chi-HDH-Cl) and gelatin (Gel) was fabricated via layer-by-layer (LBL) assembly technique. The results of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1HNMR) and X-ray photoelectron spectroscopy (XPS) showed that Chi-HHD-Cl conjugate was successfully synthesized. Scanning electron microscopy (SEM), atomic force microscope (AFM) and water contact angle measurements were employed to monitor the morphology, roughness changes and surface wettability of Ti substrates, which proved the multilayers coating formation. Antibacterial assay against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) revealed that the Gel/Chi-HDH-Cl modified Ti substrates most efficiently inhibited the adhesion and growth of bacteria. Meanwhile, in vitro cellular tests confirmed that Gel/Chi-HDH-Cl multilayers had no obvious cytotoxicity to osteoblasts. The study thus provides a promising method to fabricate antibacterial Ti-based substrates for potential orthopedic application.
Collapse
Affiliation(s)
- Bailong Tao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhang Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qichun Ran
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tingting Shen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuxia Pei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ju Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
30
|
Li M, Xu Y, Sun J, Wang M, Yang D, Guo X, Song H, Cao S, Yan Y. Fabrication of Charge-Conversion Nanoparticles for Cancer Imaging by Flash Nanoprecipitation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10752-10760. [PMID: 29470042 DOI: 10.1021/acsami.8b01788] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traditional charge-conversion nanoparticles (NPs) need the breakage of acid-labile groups on the surface, which impedes the rapid response to the acidic microenvironment. Here, we developed novel rodlike charge-conversion NPs with amphiphilic dextran- b-poly(lactic- co-glycolic acid), poly(2-(dimethylamino) ethylmethylacrylate)- b-poly(ε-caprolactone), and an aggregation-induced emission-active probe through flash nanoprecipitation (FNP). These NPs exhibit reversible negative-to-positive charge transition at a slightly acidic pH relying on the rapid protonation/deprotonation of polymers. The size and the critical charge-conversion pH can be further tuned by varying the flow rate and polymer ratio. Consequently, the charge conversion endows NPs with resistance to protein adsorption at physiological pH and enhanced internalization to cancer cells under acidic conditions. Ex vivo imaging on harvest organs shows that charge-conversion NPs were predominantly distributed in tumors after intravenous administration to mice due to the robust response of NPs to the acidic microenvironment in tumor tissue, whereas control NPs or free probes were broadly accumulated in tumor, liver, kidney, and lung. These results suggest the great potential of the current FNP strategy in the facile and generic fabrication of charge-conversion NPs for tumor-targeting delivery of drugs or fluorescent probes.
Collapse
Affiliation(s)
| | - Yisheng Xu
- Engineering Research Center of Xinjiang Bingtuan of Materials Chemical Engineering , Shihezi University , Shihezi 832000 , P. R. China
| | - Jinli Sun
- School of Public Health , Shanghai Jiao Tong University , Shanghai 200025 , P. R. China
| | | | | | | | - Haiyun Song
- School of Public Health , Shanghai Jiao Tong University , Shanghai 200025 , P. R. China
| | | | - Yunfeng Yan
- College of Biotechnology and Bioengineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , P. R. China
| |
Collapse
|
31
|
Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018; 157:107-124. [DOI: 10.1016/j.biomaterials.2017.12.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 01/02/2023]
|
32
|
Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure. Colloids Surf B Biointerfaces 2018; 163:175-183. [DOI: 10.1016/j.colsurfb.2017.12.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/16/2023]
|
33
|
Sun M, Wang K, Oupický D. Advances in Stimulus-Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Adv Healthc Mater 2018; 7:10.1002/adhm.201701070. [PMID: 29227047 PMCID: PMC5821579 DOI: 10.1002/adhm.201701070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Indexed: 01/02/2023]
Abstract
Polymeric materials that respond to a variety of endogenous and external stimuli are actively developed to overcome the main barriers to successful systemic delivery of therapeutic nucleic acids. Here, an overview of viable stimuli that are proved to improve systemic delivery of nucleic acids is provided. The main focus is placed on nucleic acid delivery systems (NADS) based on polymers that respond to pathological or physiological changes in pH, redox state, enzyme levels, hypoxia, and reactive oxygen species levels. Additional discussion is focused on NADS suitable for applications that use external stimuli, such as light, ultrasound, and local hyperthermia.
Collapse
Affiliation(s)
- Minjie Sun
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - David Oupický
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
34
|
Zhang S, Li J, Wei J, Yin M. Perylenediimide chromophore as an efficient photothermal agent for cancer therapy. Sci Bull (Beijing) 2018; 63:101-107. [PMID: 36658921 DOI: 10.1016/j.scib.2017.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 01/21/2023]
Abstract
Photothermal agents with improved bioavailabilities can generate heat from near-infrared light, which has been efficiently used for in vivo photothermal therapy (PTT) for cancer, with minimum tissue invasion. Strategies for developing organic near-infrared-absorbing molecules for photothermal cancer therapy have drawn intensive attention among academic investigators. However, conventional organic near-infrared-absorbing molecules may not only have complex synthesis procedures, but also easily suffer from photobleaching under light irradiation. These drawbacks might lead to an increase in the synthesis cost, and elicit a risk of side effects in PTT. Thus, it is essential to devise an organic photothermal agent with stable photothermal capacity, which involves a facile synthesis process. In this study, incorporating a secondary amine group (donor) in the bay regions of perylenediimides (PDIs) could lead to a 150-nm bathochromic shift of the absorption maximum. Next, a modification of poly(ethylene glycol) (PEG) at the periphery of the chromophore renders the targeted macromolecule PDI-PEG highly water-soluble, and capable of intense absorption in the near-infrared region. The self-assembled PDI-based nanoparticles (PDI-NPs) have a size of 55 nm in aqueous solutions. PDI-NPs with excellent photostability possess a high photothermal conversion efficiency of up to 43% ± 2%. Finally, PDI-NPs allow for efficient in vitro and in vivo photothermal cancer therapy. Meanwhile, PDI-NPs exhibit quite low cytotoxicity and no biotoxicity on major organs in vivo. Thus, these easily-manufactured PDI-NPs can serve as extremely stable photothermal agents for efficient photothermal cancer therapy.
Collapse
Affiliation(s)
- Shaobo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianhao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
35
|
Yang S, Wang Y, Ren Z, Chen M, Chen W, Zhang X. Stepwise pH/reduction-responsive polymeric conjugates for enhanced drug delivery to tumor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:234-243. [DOI: 10.1016/j.msec.2017.08.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023]
|
36
|
Chen H, Ma Y, Lan H, Zhao Y, Zhi D, Cui S, Du J, Zhang Z, Zhen Y, Zhang S. Dual stimuli-responsive saccharide core based nanocarrier for efficient Birc5-shRNA delivery. J Mater Chem B 2018; 6:7530-7542. [DOI: 10.1039/c8tb01683f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stimuli-responsive delivery systems show great promise in meeting the requirements of several delivery stages to achieve satisfactory gene transfection.
Collapse
Affiliation(s)
- Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| | - Yu Ma
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Haoming Lan
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Yinan Zhao
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Defu Zhi
- College of Life Science
- Dalian Minzu University
- Dalian
- P. R. China
| | - Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Yuhong Zhen
- College of Pharmacy
- Dalian Medical University
- Dalian
- P. R. China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization
- Ministry of Education
- Dalian Minzu University
- Dalian
- P. R. China
| |
Collapse
|
37
|
Tambe P, Kumar P, Karpe YA, Paknikar KM, Gajbhiye V. Triptorelin Tethered Multifunctional PAMAM-Histidine-PEG Nanoconstructs Enable Specific Targeting and Efficient Gene Silencing in LHRH Overexpressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35562-35573. [PMID: 28949503 DOI: 10.1021/acsami.7b11024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cancer treatment using siRNA based therapies pose various limitations such as off-target effects and degradation due to lack of specific delivery in desired cells. The aim of the present study was to develop multifunctional targeted nanoconstructs, which can efficiently and precisely deliver siRNA and silence the desired gene of interest in various LHRH overexpressing cancer cells. Herein, we report the development of triblock, PAMAM-histidine-PEG dendritic nanoconstructs functionalized with triptorelin (an LHRH analog) for targeted siRNA delivery to LHRH overexpressing breast (MCF-7) and prostate (LNCaP) cancer cells. The nanoconstructs were characterized using 1H NMR and DLS and displayed a very low cationic charge to avoid off-target interactions. The developed nanoconstructs showed negligible cytotoxicity and hemolytic activity with efficient siRNA loading, excellent serum stability, and strongly protected siRNA from degradation. Further, confocal microscopy results confirmed extremely significant (p < 0.001) higher cellular uptake of cy5.5 conjugated targeted nanoparticles (NPs) in both cancer cell lines than nontargeted NPs. Also, targeted NPs specifically delivered cy3-tagged siRNA to MCF-7 cells. Co-localization studies in MCF-7 and LNCaP cells further established that targeted NPs traveled through the endolysosomal pathway and escaped endosomes within 6 h of incubation. Gene silencing studies in luciferase expressing MCF-7 and LNCaP cell lines demonstrated that the targeted NPs exhibited extremely significant (p < 0.001) silencing of luciferase gene. Additionally, receptor blockade studies further confirmed the specificity of targeted NPs and suggested that targeted NPs entered cancer cells via LHRH receptor mediated endocytosis, which was evident through insignificant gene silencing in receptor blocked cells. Thus, the results indicated that PAMAM-histidine-PEG-triptorelin could be a promising approach for siRNA delivery, gene silencing, and tumor therapy in all LHRH overexpressing cancer cells.
Collapse
Affiliation(s)
- Prajakta Tambe
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Pramod Kumar
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Yogesh A Karpe
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| |
Collapse
|
38
|
Li D, van Nostrum CF, Mastrobattista E, Vermonden T, Hennink WE. Nanogels for intracellular delivery of biotherapeutics. J Control Release 2017; 259:16-28. [PMID: 28017888 DOI: 10.1016/j.jconrel.2016.12.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
|
39
|
Chen WL, Li F, Tang Y, Yang SD, Li JZ, Yuan ZQ, Liu Y, Zhou XF, Liu C, Zhang XN. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int J Nanomedicine 2017; 12:4241-4256. [PMID: 28652730 PMCID: PMC5473598 DOI: 10.2147/ijn.s129748] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Physicochemical properties, including particle size, zeta potential, and drug release behavior, affect targeting efficiency, cellular uptake, and antitumor effect of nanocarriers in a formulated drug-delivery system. In this study, a novel stepwise pH-responsive nanodrug delivery system was developed to efficiently deliver and significantly promote the therapeutic effect of doxorubicin (DOX). The system comprised dimethylmaleic acid-chitosan-urocanic acid and elicited stepwise responses to extracellular and intracellular pH. The nanoparticles (NPs), which possessed negative surface charge under physiological conditions and an appropriate nanosize, exhibited advantageous stability during blood circulation and enhanced accumulation in tumor sites via enhanced permeability and retention effect. The tumor cellular uptake of DOX-loaded NPs was significantly promoted by the first-step pH response, wherein surface charge reversion of NPs from negative to positive was triggered by the slightly acidic tumor extracellular environment. After internalization into tumor cells, the second-step pH response in endo/lysosome acidic environment elicited the on-demand intracellular release of DOX from NPs, thereby increasing cytotoxicity against tumor cells. Furthermore, stepwise pH-responsive NPs showed enhanced antiproliferation effect and reduced systemic side effect in vivo. Hence, the stepwise pH-responsive NPs provide a promising strategy for efficient delivery of antitumor agents.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Fang Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Shu-di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Ji-Zhao Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| | - Xiao-Feng Zhou
- Department of Ultrasound, Changshu Hospital of Traditional Chinese Medicine, Changshu
| | - Chun Liu
- Department of Pharmacy, The Hospital of Suzhou People's Hospital Affiliated to Nanjing Medical University, Suzhou, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou
| |
Collapse
|
40
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
41
|
|
42
|
Ni S, Xie Y, Tang Y, Liu Y, Chen J, Zhu S. Nebulized anionic guanidinylated O-carboxymethyl chitosan/N-2-hydroxypropyltimehyl ammonium chloride chitosan nanoparticles for siRNA pulmonary delivery: preparation, characterization and in vitro evaluation. J Drug Target 2017; 25:451-462. [PMID: 28110554 DOI: 10.1080/1061186x.2016.1278219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study developed a pH-sensitive anionic system composed of guanidinylated O-carboxymethyl chitosan (GOCMCS) and N-2-hydroxypropyltimehyl ammonium chloride chitosan (N-2-HACC) for efficient siRNA delivery to the lungs following nebulization. About 16.8% of guanidine groups were incorporated into O-carboxymethyl chitosan (OCMCS) with the aid of O-methylisourea. Gel electrophoresis images demonstrated that siRNA was successfully encapsulated in nanoparticles ranging from 150 to 180 nm with zeta potential of about -17 mV. The nanoparticles containing GOCMCS existed superior transfection performance compared with their amino-based analogs. The evaluation in vitro revealed that nanoparticles were internalized into A549 cells by energy-dependent endocytosis, then achieved endosomal escape by direct transmembrane penetration of guanidine moieties as well as swelling behavior of nanoparticles due to the pH sensitivity of GOCMCS. The mRNA level of survivin gene was down-regulated to 6.9% using GOCMCS/N-2-HACC/siSurvivin NPs. The survivin siRNA mediated by nanoparticles caused 30% of cell growth inhibition and induced 19.45% of cell apoptosis, which was comparable to Lipofectamin2000. After nebulization of siRNA-loaded nanoparticles, the stability of siRNA was maintained and fine particle fractions were detected by two-stage impinger that accounted for more than 60%. These results suggested that GOCMCS/N-2-HACC nanoparticles possessed potential as safe and efficient carrier for siRNA pulmonary delivery.
Collapse
Affiliation(s)
- Suhui Ni
- a Department of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Yuwen Xie
- a Department of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Yue Tang
- a Department of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Yun Liu
- a Department of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Jing Chen
- a Department of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| | - Siyan Zhu
- a Department of Pharmacy , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
43
|
Su S, Du FS, Li ZC. Synthesis and pH-dependent hydrolysis profiles of mono- and dialkyl substituted maleamic acids. Org Biomol Chem 2017; 15:8384-8392. [DOI: 10.1039/c7ob02188g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled synthesis and in-depth study on pH-dependent hydrolysis profiles of substituted maleamic acid derivatives.
Collapse
Affiliation(s)
- Shan Su
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
44
|
Albumin hybrid nanoparticles loaded with tyrosine kinase A inhibitor GNF-5837 for targeted inhibition of breast cancer cell growth and invasion. Int J Pharm 2016; 515:527-534. [DOI: 10.1016/j.ijpharm.2016.10.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/17/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023]
|
45
|
Direct Correlation Between Zeta Potential and Cellular Uptake of Poly(methacrylic acid) Post‐Modified with Guanidinium Functionalities. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Hao W, Liu D, Shang Y, Zhang J, Xu S, Liu H. pH-Triggered copolymer micelles as drug nanocarriers for intracellular delivery. RSC Adv 2016. [DOI: 10.1039/c6ra00673f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We prepared pH-sensitive polymeric micelles which were used as nano-carriers and exhibited a high loading capacity and pH-triggered release of DOX.
Collapse
Affiliation(s)
- Weiju Hao
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- PR China
| | - Danyang Liu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- PR China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- PR China
| | - Junqi Zhang
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education)
- Department of Medical Microbiology and Parasitology
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
| | - Shouhong Xu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- PR China
| | - Honglai Liu
- Key Laboratory for Advanced Materials and Department of Chemistry
- East China University of Science and Technology
- Shanghai
- PR China
| |
Collapse
|
47
|
Ji C, Zheng Y, Li J, Shen J, Yang W, Yin M. An amphiphilic squarylium indocyanine dye for long-term tracking of lysosomes. J Mater Chem B 2015; 3:7494-7498. [DOI: 10.1039/c5tb01738f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel amphiphilic squarylium indocyanine (LysoCy) is reported for remarkable lysosome tracking in live cells.
Collapse
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Yang Zheng
- Department of Entomology
- China Agricultural University
- 100193 Beijing
- China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Jie Shen
- Department of Entomology
- China Agricultural University
- 100193 Beijing
- China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering
- Beijing Laboratory of Biomedical Materials
- Beijing University of Chemical Technology
- 100029 Beijing
- China
| |
Collapse
|