1
|
Xue Z, Wang L, Pan S, Yan J, You M, Yao C. The nucleic acid reactions on the nanomaterials surface for biomedicine. J Nanobiotechnology 2025; 23:308. [PMID: 40269855 PMCID: PMC12016162 DOI: 10.1186/s12951-025-03374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025] Open
Abstract
Integrating nucleic acids (NAs) with nanomaterials has substantially advanced biomedical research, enabling critical applications in biosensing, drug delivery, therapeutics, and the synthesis of nanomaterials. At the core of these advances are the reactions of NAs on nanomaterial surfaces, encompassing conjugation (covalent and non-covalent), detachment (physical and chemical), and signal amplification (enzyme-mediated signal amplification, enzyme-free signal amplification, and DNA Walker). Here, we review the fundamental mechanisms and recent progress in nucleic acid reactions on nanomaterial surfaces, discuss emerging applications for diagnostics, nanomedicine, and gene therapy, and explore persistent challenges in the field. We offer a forward-looking perspective on how future developments could better control, optimize, and harness these reactions for transformative advances in nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Zhenrui Xue
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Lu Wang
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Shengnan Pan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Jie Yan
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Ren L, Cao S, Guo L, Li J, Jiao K, Wang L. Recent advances in nucleic acid-functionalized metallic nanoparticles. Chem Commun (Camb) 2025; 61:4904-4923. [PMID: 40047804 DOI: 10.1039/d5cc00359h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nucleic acid-functionalized metallic nanoparticles (N-MNPs) precisely integrate the advantageous characteristics of nucleic acids and metallic nanomaterials, offering various abilities such as resistance to enzymatic degradation, penetration of physiological barriers, controllable mobility, biomolecular recognition, programmable self-assembly, and dynamic structure-function transformation. These properties demonstrate significant potential in the field of biomedical diagnostics and therapeutics. In this review, we examine recent advancements in the construction and theranostic applications of N-MNPs. We briefly summarize the methodologies employed in the conjugation of nucleic acids with metallic nanoparticles and the formation of their superstructural assemblies. We highlight recent representative applications of N-MNPs in biomolecular diagnosis, imaging, and smart delivery of theranostic agents. We also discuss challenges currently faced in this field and provide an outlook on future development directions and application prospects.
Collapse
Affiliation(s)
- Lei Ren
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shuting Cao
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, Zhejiang, China
- Nano-translational Medicine Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Siegel N, Hasebe H, Chiarelli G, Garoli D, Sugimoto H, Fujii M, Acuna GP, Kołątaj K. Universal Click-Chemistry Approach for the DNA Functionalization of Nanoparticles. J Am Chem Soc 2024; 146:17250-17260. [PMID: 38871677 DOI: 10.1021/jacs.4c03833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Nanotechnology has revolutionized the fabrication of hybrid species with tailored functionalities. A milestone in this field is the deoxyribonucleic acid (DNA) conjugation of nanoparticles, introduced almost 30 years ago, which typically exploits the affinity between thiol groups and metallic surfaces. Over the last decades, developments in colloidal research have enabled the synthesis of an assortment of nonmetallic structures, such as high-index dielectric nanoparticles, with unique properties not previously accessible with traditional metallic nanoparticles. However, to stabilize, integrate, and provide further functionality to nonmetallic nanoparticles, reliable techniques for their functionalization with DNA will be crucial. Here, we combine well-established dibenzylcyclooctyne-azide click-chemistry with a simple freeze-thaw method to achieve the functionalization of silica and silicon nanoparticles, which form exceptionally stable colloids with a high DNA surface density of ∼0.2 molecules/nm2. Furthermore, we demonstrate that these functionalized colloids can be self-assembled into high-index dielectric dimers with a yield of over 50% via the use of DNA origami. Finally, we extend this method to functionalize other important nanomaterials, including oxides, polymers, core-shell, and metal nanostructures. Our results indicate that the method presented herein serves as a crucial complement to conventional thiol functionalization chemistry and thus greatly expands the toolbox of DNA-functionalized nanoparticles currently available.
Collapse
Affiliation(s)
- Nicole Siegel
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Hiroaki Hasebe
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Germán Chiarelli
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
| | - Denis Garoli
- Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia, Via Amendola 2 Padiglione Tamburini, 42122 Reggio Emilia, Italy
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Karol Kołątaj
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH 1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Liu L, Peng M, Liang Z, Wu H, Yan H, Zhou YG. Sensitive quantification of mercury ions in real water systems based on an aggregation-collision electrochemical detection. Anal Chim Acta 2023; 1276:341638. [PMID: 37573116 DOI: 10.1016/j.aca.2023.341638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Nanoparticle impact electrochemistry (NIE) is an emerging electroanalytical technique that has been utilized to the sensitive detection of a wide range of biological species. So far, the NIE based trace ion detection is largely unexplored due to the lack of effective signal amplification strategies. We herein develop an NIE-based electrochemical sensing platform that utilizes T-Hg2+-T coordination induced AgNP aggregation to detect Hg2+ in aqueous solution. The proposed aggregation-collision strategy enables highly sensitive and selective detection. A dual-mode analysis based on the change in impact frequency and oxidative charge of the anodic oxidation of the AgNPs in NIE allows for more accurate self-validated quantification. Furthermore, the current NIE-based sensor demonstrates reliable analysis of Hg2+ of real water samples, showing great potential for practical environmental monitoring and point-of-care testing (POCT) applications.
Collapse
Affiliation(s)
- Lizhen Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Meihong Peng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Zerong Liang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China
| | - Hong Wu
- Department of Otorhinolaryngology, Xiangya Hospital, Central South University, Changsha, 410000, China.
| | - Hailong Yan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, Guangdong Province, China.
| |
Collapse
|
5
|
Sha L, Wang W, Liu Q, Dong L, Zhao J, Tu M. An integrated and renewable interface for capture, release and analysis of circulating tumor cells. Anal Chim Acta 2023; 1274:341556. [PMID: 37455076 DOI: 10.1016/j.aca.2023.341556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Circulating tumor cells (CTCs) have now emerged as a type of promising circulating biomarkers in liquid biopsy and can predict the occurrence and development of cancers. In this work, an integrated and renewable interface is fabricated for the capture, release and quantitative analysis of CTCs. As designed, folate receptor-positive CTCs are captured by folic acid-modified DNA probes at the interface through the receptor-ligand interaction, and are efficiently released from the interface with the aid of bleomycin-ferrous complex-regulated cleavage. Taking MCF-7 cells as the model, the functional interface demonstrates high efficiency to selectively capture the folate receptor-positive tumor cells, and the bleomycin-ferrous complex-regulated cleavage not only easily releases the captured cells with well-maintained viability and proliferation ability, but also releases silver nanoparticles that are labeled at the cell surface for highly sensitive quantification by adopting electrochemical techniques with a detection limit of 6 cells/mL. At the meanwhile, the interface is proved to be regenerated through a simple cleavage-hybridization event and reused with high stability. Therefore, our work may provide a new idea for the collection and downstream researches of circulating tumor cells in the future.
Collapse
Affiliation(s)
- Lingjun Sha
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Qi Liu
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Langjian Dong
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
6
|
Li K, Liu Y, Lou B, Tan Y, Chen L, Liu Z. DNA-directed assembly of nanomaterials and their biomedical applications. Int J Biol Macromol 2023:125551. [PMID: 37356694 DOI: 10.1016/j.ijbiomac.2023.125551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In the past decades, DNA has been widely used in the field of nanostructures due to its unique programmable properties. Besides being used to form its own diverse structures such as the assembly of DNA origami, DNA can also be used for the assembly of nanostructures with other materials. In this review, different strategies for the functionalization of DNA on nanoparticle surfaces are listed, and the roles of DNA in the assembly of nanostructures as well as the influencing factors are discussed. Finally, the biomedical applications of DNA-assembled nanostructures were summarized. This review provided new insight into the application of DNA in nanostructure assembly.
Collapse
Affiliation(s)
- Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
7
|
Li K, Liu Y, Lou B, Tan Y, Chen L, Liu Z. DNA-Guided Metallization of Nanomaterials and Their Biomedical Applications. Molecules 2023; 28:molecules28093922. [PMID: 37175332 PMCID: PMC10180097 DOI: 10.3390/molecules28093922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Precise control of the structure of metallic nanomaterials is critical for the advancement of nanobiotechnology. As DNA (deoxyribonucleic acid) can readily modify various moieties, such as sulfhydryl, carboxyl, and amino groups, using DNA as a directing ligand to modulate the morphology of nanomaterials is a promising strategy. In this review, we focus on the use of DNA as a template to control the morphology of metallic nanoparticles and their biomedical applications, discuss the use of DNA for the metallization of gold and silver, explore the factors that influence the process, and outline its biomedical applications. This review aims to provide valuable insights into the DNA-guided growth of nanomaterials. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
8
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Usta HM, Forough M, Persil Çetinkol Ö. Coumarin 6H-fused fluorescent probe for highly sensitive detection of coralyne using oligonucleotide-modified silver nanoparticles. Anal Bioanal Chem 2022; 414:7299-7313. [PMID: 35976422 DOI: 10.1007/s00216-022-04282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel, rapid, and sensitive fluorescence sensing platform was developed for the detection of coralyne (COR) by the conjugation of coumarin 6H (C6H) fluorescent dye with oligonucleotide-modified silver nanoparticles [(dT)32-AgNPs]. In the presence of COR, a remarkable and rapid decrease in the fluorescence signal of the probe with a quenching efficiency of around 62% was observed. The quenching response of the system towards COR was possibly due to the displacement of thymidine-rich deoxyoligonucleotides by COR on the surface of AgNPs. The complementary experiments with an adenine-rich single strand as well as with two different secondary structures (i.e., duplex and triplex) revealed a favorable sequence specificity of the sensing platform. The influence of key parameters including the incubation time and temperature was evaluated and optimized to achieve the highest performance. The linear range of 10-183 nM with a correlation coefficient of R = 0.9982 and a limit of detection of 5.24 nM were obtained under the optimized conditions. The selectivity of the proposed probe towards COR was revealed by the evaluation of its response to other small molecules that have molecular structures similar to COR. Finally, the successful applicability of the system was shown with the obtained average recoveries in the range of 87.28-104.52% in human urine samples.
Collapse
Affiliation(s)
- Hatice Müge Usta
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Özgül Persil Çetinkol
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
10
|
Silver nanomaterials sensing of mercury ions in aqueous medium. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Li D, Yang E, Luo Z, Xie Q, Duan Y. An enzyme-mediated universal fluorescent biosensor template for pathogen detection based on a three-dimensional DNA walker and catalyzed hairpin assembly. NANOSCALE 2021; 13:2492-2501. [PMID: 33471006 DOI: 10.1039/d0nr07593k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An enzyme-mediated universal fluorescent biosensor template for rapid detection of pathogens was developed based on the strategy of a three-dimensional (3D) DNA walker and catalyzed hairpin assembly (CHA) reaction. In the bacterial recognition step, a strand displacement reaction between bacteria and the double-stranded complex caused the release of the walker strand. The walker strand triggered the DNA walker to produce an enzyme fragment, and the DNA walker used gold nanoparticles (AuNPs) as the track to provide an excellent DNA ligand anchoring area. In the CHA step, the enzyme fragment induced the CHA cycle to yield fluorescence signals, which greatly enhanced the conversion ratio of trigger DNA and the sensitivity of the fluorescent biosensor. The effect of the distance and density of the DNA ligand was studied by adjusting the length of poly-adenine (PolyA), and was further explored by its reaction kinetics. By comparing the maximum reaction rate (Vmax), Michaelis constant (Km) and turnover number (Kcat), the optimized PolyA probe was assessed and identified. In this work, the optimized PolyA-DNA probe exhibited an outstanding sensitivity in Salmonella typhimurium (S. ty) detection, which is 11.9 times and 4.6 times higher than those of the SH-DNA and the MCH treated SH-DNA. Meanwhile, a detection limit of 28.1 CFU mL-1 was achieved in Escherichia coli (E. coli) detection. Furthermore, the biosensor achieved good selectivity and high repeatability with recoveries of 91%-115% for real sample detection. Considering these advantages, this template has great potential as a routine tool for pathogen detection and has wide applications in the field of global public health and food safety.
Collapse
Affiliation(s)
- Dan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| | - Enlai Yang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China
| | - Qiyue Xie
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| |
Collapse
|
12
|
Guo Y, Lv M, Ren J, Wang E. Regulating Catalytic Activity of DNA-Templated Silver Nanoclusters Based on their Differential Interactions with DNA Structures and Stimuli-Responsive Structural Transition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006553. [PMID: 33350148 DOI: 10.1002/smll.202006553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/05/2020] [Indexed: 05/21/2023]
Abstract
This work reports exquisite engineering of catalytic activity of DNA-templated silver nanoclusters (DNA-AgNCs) based on unique adsorption phenomena of DNAs on DNA-AgNCs and reversible transition between double and triple-stranded DNAs. Four DNA homopolymers exhibit different inhibition effects on the catalytic activity of DNA-AgNCs, poly adenine (polyA) > poly guanine (polyG) > poly cytosine (polyC) > poly thymine (polyT), demonstrating that polyA strands have the strongest adsorption affinity on DNA-AgNCs. Through the formation of T-A•T triplex DNAs, catalytic activity of DNA-AgNCs is restored from the deactivated state by double or single-stranded DNAs, indicating the participation of N7 groups of adenine bases in binding to DNA-AgNCs and blocking active sites. Accordingly, reversibly regulating catalytic activity of DNA-AgNCs can be realized based on DNA input-stimulated transition between duplex and triplex structures. In the end, two low-cost and facile biosensing methods are presented, which are derived from the activity-switchable platform. It is worthy to anticipate that the DNA-AgNCs with controlled catalytic activity will inspire researchers to devise more functionalized nanocatalysts and contribute to the exploration of intelligent biomedicine in the future.
Collapse
Affiliation(s)
- Yuchun Guo
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Mengmeng Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
13
|
Yao G, Li J, Li Q, Chen X, Liu X, Wang F, Qu Z, Ge Z, Narayanan RP, Williams D, Pei H, Zuo X, Wang L, Yan H, Feringa BL, Fan C. Programming nanoparticle valence bonds with single-stranded DNA encoders. NATURE MATERIALS 2020; 19:781-788. [PMID: 31873228 DOI: 10.1038/s41563-019-0549-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/01/2019] [Indexed: 05/22/2023]
Abstract
Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with n-valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications.
Collapse
Affiliation(s)
- Guangbao Yao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliang Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoguo Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibei Qu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilei Ge
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Raghu Pradeep Narayanan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Dewight Williams
- Erying Materials Center, Office of Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaolei Zuo
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. Int J Biol Macromol 2020; 151:757-780. [DOI: 10.1016/j.ijbiomac.2020.02.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
15
|
Li D, Luo Z, An H, Yang E, Wu M, Huang Z, Duan Y. Poly-adenine regulated DNA density on AuNPs to construct efficient DNA walker for microRNA-21 detection. Talanta 2020; 217:121056. [PMID: 32498903 DOI: 10.1016/j.talanta.2020.121056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022]
Abstract
DNA-modified gold nanoparticles (AuNPs) are useful nanomaterials for detecting multiple molecules. However, their performance is greatly dependent on the density of probe DNA on the surface of AuNPs. Here, we used Poly-adenine (PolyA) to regulate the surface density of probe DNA to achieve a highly efficient DNA walking biosensor system to detection miRNA-21. The movement track of the biosensor system consists of PolyA-DNA probe was connected to AuNPs, and exonuclease III (Exo III) acted as a motor driving the walker movement to achieve signal amplification. By optimizing the length of PolyA, the surface density of probe DNA was changed, thereby affecting the target binding and enzymatic processing of the bound probes, which ultimately enhanced the sensitivity and reduced timeliness of the DNA walker. Furthermore, the designed PolyA-DNA probe exhibits an outstanding sensitivity, due to the effect of density regulation, which is 7.9 times and 11.1 times lower than those of the SH-DNA and the free-DNA, respectively. In addition, the hairpin structure of DNA probe locates fluorophore at a zone adjacent to AuNPs surface, which reduces the background signal by 1.1 times compared with traditional straight probe. In this work, the biosensor system shows a high selectivity towards miRNA-21. Moreover, the biosensor system has been demonstrated to be potentially useful for the miRNA-21 detection in human serum with the recoveries of 93.2%-110.0% and has high repeatability. Considering these advantages, this PolyA-regulated DNA walking biosensor system has great potential as a routine tool for miRNA detection and has wide applications in the field of biomedical analysis.
Collapse
Affiliation(s)
- Dan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shanxi, PR China
| | - Huifang An
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Enlai Yang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, Shanxi, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
16
|
Pawar S, Teja BR, Nagarjuna R, Ganesan R, Nag A. Probing the surface composition effect of silver-gold alloy in SERS efficiency. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Metal-Mediated Gold Nanospheres Assembled for Dark-Field Microscopy Imaging Scatterometry. Talanta 2019; 201:280-285. [DOI: 10.1016/j.talanta.2019.03.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 01/02/2023]
|
18
|
Xie YF, Cheng YY, Liu ML, Zou HY, Huang CZ. A single gold nanoprobe for colorimetric detection of silver(i) ions with dark-field microscopy. Analyst 2019; 144:2011-2016. [DOI: 10.1039/c8an02397b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the formation of C–Ag+–C bonding between cytosines was utilized to induce interparticle coupling of gold nanoparticles modified with single-strand DNA, resulting in a color change as the signal transduction to quantify Ag+ sensitively under dark-field microscopy imaging, while we achieved the quantification of Ag+ could be directly realized in lake water samples and drug samples.
Collapse
Affiliation(s)
- Yi Fen Xie
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
| | - Yun Ying Cheng
- Key Laboratory of Biomedical Analysis (Southwest University)
- Chongqing Science & Technology Commission
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400716
| | - Meng Li Liu
- Key Laboratory of Biomedical Analysis (Southwest University)
- Chongqing Science & Technology Commission
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400716
| | - Hong Yan Zou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Science
- Southwest University
- Chongqing 400715
| |
Collapse
|
19
|
A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Anal Bioanal Chem 2018; 411:877-883. [DOI: 10.1007/s00216-018-1505-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
|
20
|
Li J, Yu J, Huang Y, Zhao H, Tian L. Highly Stable and Multiemissive Silver Nanoclusters Synthesized in Situ in a DNA Hydrogel and Their Application for Hydroxyl Radical Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26075-26083. [PMID: 30001115 DOI: 10.1021/acsami.8b09152] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Oligonucleotide-stabilized silver nanoclusters (AgNCs) show promising applications in bioimaging and bio-/chemo-sensing. However, their unsatisfactory photostability limits their practical applications. In this work, fluorescent AgNCs were synthesized in situ in a DNA hydrogel, consisting of cross-linked enzymatically amplified polymeric DNAs with cytosine-rich sequences in the presence of Ag+. The fluorescence property of the resultant AgNCs was optimized by a rational design of the DNA sequences to cover a broad spectrum with comparable green and red emissions. Under the protection of the DNA hydrogel, the AgNCs showed significantly improved photostability in an ambient oxygen environment, as well as low cytotoxicity even at a high concentration. Therefore, these properties show the rolling-circle-amplification-stabilized AgNCs to be a promising possible fluorescent probe for the detection of reactive oxygen/nitrogen species (ROS/RNS) in live cells because red-emitting species are susceptible to oxidation and consequently convert to green-emitting species. Finally, the as-prepared AgNCs were demonstrated to be a sensitive and specific probe for cellular imaging and the monitoring of ROS/RNS levels, which broadens the applications of AgNCs and provides a new tool for related biological investigations.
Collapse
Affiliation(s)
- Jing Li
- Department of Materials Science and Engineering , Southern University of Science and Technology , 1088 Xueyuan Blvd. , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
| | - Jiantao Yu
- Department of Materials Science and Engineering , Southern University of Science and Technology , 1088 Xueyuan Blvd. , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
| | - Yishun Huang
- Department of Materials Science and Engineering , Southern University of Science and Technology , 1088 Xueyuan Blvd. , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
| | - Haoran Zhao
- Department of Materials Science and Engineering , Southern University of Science and Technology , 1088 Xueyuan Blvd. , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
| | - Leilei Tian
- Department of Materials Science and Engineering , Southern University of Science and Technology , 1088 Xueyuan Blvd. , Nanshan District, Shenzhen , Guangdong 518055 , P. R. China
| |
Collapse
|
21
|
Ye D, Zuo X, Fan C. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:171-195. [PMID: 29490188 DOI: 10.1146/annurev-anchem-061417-010007] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.
Collapse
Affiliation(s)
- Dekai Ye
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Zuo
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
- Institute of Molecular Medicine, Renji Hospital, Schools of Medicine and Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
| |
Collapse
|
22
|
Zhang Y, Tu J, Wang D, Zhu H, Maity SK, Qu X, Bogaert B, Pei H, Zhang H. Programmable and Multifunctional DNA-Based Materials for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703658. [PMID: 29389041 DOI: 10.1002/adma.201703658] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/09/2017] [Indexed: 06/07/2023]
Abstract
DNA encodes the genetic information; recently, it has also become a key player in material science. Given the specific Watson-Crick base-pairing interactions between only four types of nucleotides, well-designed DNA self-assembly can be programmable and predictable. Stem-loops, sticky ends, Holliday junctions, DNA tiles, and lattices are typical motifs for forming DNA-based structures. The oligonucleotides experience thermal annealing in a near-neutral buffer containing a divalent cation (usually Mg2+ ) to produce a variety of DNA nanostructures. These structures not only show beautiful landscape, but can also be endowed with multifaceted functionalities. This Review begins with the fundamental characterization and evolutionary trajectory of DNA-based artificial structures, but concentrates on their biomedical applications. The coverage spans from controlled drug delivery to high therapeutic profile and accurate diagnosis. A variety of DNA-based materials, including aptamers, hydrogels, origamis, and tetrahedrons, are widely utilized in different biomedical fields. In addition, to achieve better performance and functionality, material hybridization is widely witnessed, and DNA nanostructure modification is also discussed. Although there are impressive advances and high expectations, the development of DNA-based structures/technologies is still hindered by several commonly recognized challenges, such as nuclease instability, lack of pharmacokinetics data, and relatively high synthesis cost.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Jing Tu
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
| | | | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Bram Bogaert
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Department of Radiology, Affiliated Hospital of Jiangsu University Jiangsu University, 212001, Zhenjiang, P. R. China
- Turku Center for Biotechnology, Åbo Akademi University, 20520, Turku, Finland
| |
Collapse
|
23
|
Zhu D, Zhao D, Huang J, Zhu Y, Chao J, Su S, Li J, Wang L, Shi J, Zuo X, Weng L, Li Q, Wang L. Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1797-1807. [PMID: 29777876 DOI: 10.1016/j.nano.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
Identification of tumor-related mRNA in living cells hold great promise for early cancer diagnosis and pathological research. Herein, we present poly-adenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) probes for intracellular mRNA detection with regulable sensitivities by programmably adjusting the loading density of DNA on gold nano-interface. Gold nanoparticles (AuNPs) functionalized with polyA-tailed recognition sequences were hybridized to fluorescent "reporter" strands to fabricate fluorescence-quenched FSNA probes. While exposed to target gene, the "reporter" strands were released from FSNA through strand displacement and fluorescence was recovered. With polyA20 tail as the attaching block, the detection limit of FSNA probes was calculated to be 0.31 nM, which is ~55 fold lower than that of thiolated probes without surface density regulation. Quantitative intracellular mRNA detection and imaging could be achieved with polyA-mediated FSNA probes within 2 hours, indicating their application potential in rapid and sensitive intracellular target imaging.
Collapse
Affiliation(s)
- Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongxia Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China; College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiaxuan Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yu Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiye Shi
- UCB Pharma, Slough, United Kingdom
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
24
|
Convertible DNA ends-based silver nanoprobes for colorimetric detection human telomerase activity. Talanta 2018; 178:458-463. [DOI: 10.1016/j.talanta.2017.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022]
|
25
|
Qi L, Xiao M, Wang F, Wang L, Ji W, Man T, Aldalbahi A, Naziruddin Khan M, Periyasami G, Rahaman M, Alrohaili A, Qu X, Pei H, Wang C, Li L. Poly-cytosine-mediated nanotags for SERS detection of Hg 2. NANOSCALE 2017; 9:14184-14191. [PMID: 28905956 DOI: 10.1039/c7nr05165d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly sensitive and selective detection of heavy metal ions, such as Hg2+, is of great importance because the contamination of heavy metal ions has been a serious threat to human health. Herein, we have developed poly-cytosine (polyC)-mediated surface-enhanced Raman scattering (SERS) nanotags as a sensor system for rapid, selective, and sensitive detection of Hg2+ based on thymidine-Hg2+-thymidine (T-Hg2+-T) coordination and polyC-mediated Raman activity. The SERS nanotags exploit the mismatched T-T base pairs to capture Hg2+ form T-Hg2+-T bridges, which induce the aggregation of nanotags giving rise to the drastic amplification in the SERS signals. Moreover, this polyC not only provides the anchoring function to induce the formation of intrinsic silver-cytosine coordination but also engineers the Raman-activity of SERS nanotags by mediating its length. As a result, the polyC-mediated SERS nanotags show an excellent response for Hg2+ in the concentration range from 0.1 to 1000 nM and good selectivity over other metal ions. Given its simple principle and easy operation, the polyC-mediated SERS nanotags, therefore, could serve as a promising sensor for practical use.
Collapse
Affiliation(s)
- Lin Qi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu J, Dong ZZ, Yang C, Li G, Wu C, Lee FW, Leung CH, Ma DL. Turn-on Luminescent Probe for Hydrogen Peroxide Sensing and Imaging in Living Cells based on an Iridium(III) Complex-Silver Nanoparticle Platform. Sci Rep 2017; 7:8980. [PMID: 28827747 PMCID: PMC5566206 DOI: 10.1038/s41598-017-09478-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
A sensitive turn-on luminescent sensor for H2O2 based on the silver nanoparticle (AgNP)-mediated quenching of an luminescent Ir(III) complex (Ir-1) has been designed. In the absence of H2O2, the luminescence intensity of Ir-1 can be quenched by AgNPs via non-radiative energy transfer. However, H2O2 can oxidize AgNPs to soluble Ag+ cations, which restores the luminescence of Ir-1. The sensing platform displayed a sensitive response to H2O2 in the range of 0-17 μM, with a detection limit of 0.3 μM. Importantly, the probe was successfully applied to monitor intracellular H2O2 in living cells, and it also showed high selectivity for H2O2 over other interfering substances.
Collapse
Affiliation(s)
- Jinshui Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhen-Zhen Dong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Fu-Wa Lee
- College of International Education, School of Continuing Education, Hong Kong Baptist University, Shek Mun, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
27
|
Liu J, Vellaisamy K, Yang G, Leung CH, Ma DL. Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles. Sci Rep 2017; 7:3620. [PMID: 28620192 PMCID: PMC5472617 DOI: 10.1038/s41598-017-03952-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022] Open
Abstract
A novel luminescent turn-on detection method for Hg(II) was developed. The method was based on the silver nanoparticle (AgNP)-mediated quenching of Ir(III) complex 1. The addition of Hg(II) ions causes the luminescence of complex 1 to be recovered due to the oxidation of AgNPs by Hg(II) ions to form Ag(I) and Ag/Hg amalgam. The luminescence intensity of 1 increased in accord with an increased Hg(II) concentration ranging from 0 nM to 180 nM, with the detection limit of 5 nM. This approach offers an innovative method for the quantification of Hg(II).
Collapse
Affiliation(s)
- Jinshui Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kasipandi Vellaisamy
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Guanjun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
28
|
Javani S, Lorca R, Latorre A, Flors C, Cortajarena AL, Somoza Á. Antibacterial Activity of DNA-Stabilized Silver Nanoclusters Tuned by Oligonucleotide Sequence. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10147-10154. [PMID: 27058628 DOI: 10.1021/acsami.6b00670] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Silver nanoclusters (AgNCs) stabilized by DNA are promising materials with tunable fluorescent properties, which have been employed in a plethora of sensing systems. In this report, we explore their antimicrobial properties in Gram-positive and Gram-negative bacteria. After testing 9 oligonucleotides with different sequence and length, we found that the antibacterial activity depends on the sequence of the oligonucleotide employed. The sequences tested yielded fluorescent AgNCs, which can be grouped in blue, yellow, and red emitters. Interestingly, blue emitters yielded poor antibacterial activity, whereas yellow and red emitters afforded an activity similar to silver nitrate. Furthermore, structural studies using circular dichroism indicate the formation of complexes with different stability and structure, which might be one of the factors that modulate their activity. Finally, we prepared a trimeric structure containing the sequence that afforded the best antimicrobial activity, which inhibited the growth of Gram-positive and negative bacteria in the submicromolar range.
Collapse
Affiliation(s)
- Siamak Javani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid, Spain
| | - Romina Lorca
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid, Spain
| | - Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid, Spain
| | - Cristina Flors
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid, Spain
| | - Aitziber L Cortajarena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), & Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid, Spain
| |
Collapse
|
29
|
Zhu D, Song P, Shen J, Su S, Chao J, Aldalbahi A, Zhou Z, Song S, Fan C, Zuo X, Tian Y, Wang L, Pei H. PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis. Anal Chem 2016; 88:4949-54. [PMID: 27058116 DOI: 10.1021/acs.analchem.6b00891] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Understanding the behavior of biomolecules on nanointerface is critical in bioanalysis, which is great challenge due to the instability and the difficulty to control the orientation and loading density of biomolecules. Here, we investigated the thermodynamics and kinetics of DNA hybridization on gold nanoparticle, with the aim to improve the efficiency and speed of DNA analysis. We achieved precise and quantitative surface control by applying a recently developed poly adenines (polyA)-based assembly strategy on gold nanoparticles (DNA-AuNPs). PolyA served as an effective anchoring block based on the preferential binding with the AuNP surface and the appended recognition block adopted an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can be systematically modulated by adjusting the length of polyA block. We found the stability of duplex on AuNP was enhanced with the increasing length of polyA block. When the length of polyA block reached to 40 bases, the thermodynamic properties were more similar to that of duplex in solution. Fast hybridization rate was observed on the diblock DNA-AuNPs and was increased along with the length of polyA block. We consider the high stability and excellent hybridization performance come from the minimization of the DNA-DNA and DNA-AuNP interactions with the use of polyA block. This study provides better understanding of the behavior of biomolecules on the nanointerface and opens new opportunities to construct high-efficiency and high-speed biosensors for DNA analysis.
Collapse
Affiliation(s)
- Dan Zhu
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications , Nanjing 210023, People's Republic of China.,Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, People's Republic of China
| | - Ping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, People's Republic of China
| | - Juwen Shen
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| | - Shao Su
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications , Nanjing 210023, People's Republic of China
| | - Jie Chao
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications , Nanjing 210023, People's Republic of China
| | - Ali Aldalbahi
- Chemistry Department, King Saud University , Riyadh 11451, Saudi Arabia
| | - Ziang Zhou
- Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Shiping Song
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, People's Republic of China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, People's Republic of China
| | - Xiaolei Zuo
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, People's Republic of China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| | - Lianhui Wang
- Institute of Advanced Materials, Nanjing University of Posts and Telecommunications , Nanjing 210023, People's Republic of China
| | - Hao Pei
- School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, People's Republic of China
| |
Collapse
|
30
|
Cao F, Ju E, Liu C, Pu F, Ren J, Qu X. Coupling a DNA–ligand ensemble with Ag cluster formation for the label-free and ratiometric detection of intracellular biothiols. Chem Commun (Camb) 2016; 52:5167-70. [DOI: 10.1039/c5cc10606k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A smart nanoprobe was constructed by coupling a DNA–ligand ensemble with Ag cluster formation for the ratiometric detection of intracellular biothiols.
Collapse
Affiliation(s)
- Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
31
|
Chen P, Zhang T, Zhou T, Liu D. Number-controlled spatial arrangement of gold nanoparticles with DNA dendrimers. RSC Adv 2016. [DOI: 10.1039/c6ra16653a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient approach was developed to yield a number-controlled spatial arrangement of gold nanoparticles mediated by DNA dendrimers.
Collapse
Affiliation(s)
- Ping Chen
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huaian 223300
- P. R. China
| | - Tao Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Tao Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
32
|
Zhu D, Pei H, Chao J, Su S, Aldalbahi A, Rahaman M, Wang L, Wang L, Huang W, Fan C, Zuo X. Poly-adenine-based programmable engineering of gold nanoparticles for highly regulated spherical DNAzymes. NANOSCALE 2015; 7:18671-6. [PMID: 26498866 DOI: 10.1039/c5nr05366h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Enzyme complexes are assembled at the two-dimensional lipid membrane or prearranged on three-dimensional scaffolding proteins to regulate their catalytic activity in cells. Inspired by nature, we have developed gold nanoparticle-based spherical DNAzymes (SNAzymes) with programmably engineered activities by exploiting poly-adenine (polyA)-Au interactions. In a SNAzyme, AuNPs serve as the metal core, which is decorated with a functional shell of DNAzymes. Conventional thiolated DNAzyme-based assembly leads to disordered structures with suppressed activity. In contrast, by using an anchoring block of polyA tails, we find that the activity of SNAzymes can be programmably regulated. By using a polyA30 tail, SNAzymes demonstrated remarkably enhanced binding affinity compared to the thiolated DNAzyme-based assembly (∼75-fold) or individual DNAzymes in the solution phase (∼10-fold). More significantly, this increased affinity is directly translated to the sensitivity improvement in the SNAzyme-based lead sensor. Hence, this design of SNAzymes may provide new opportunities for developing biosensors and bioimaging probes for theranostic applications.
Collapse
Affiliation(s)
- Dan Zhu
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|